
K-Hunt: Pinpointing Insecure Cryptographic
Keys from Execution Traces

Juanru Li1, Zhiqiang Lin2, Juan Caballero3, Yuanyuan Zhang1, Dawu Gu1

1 G.O.S.S.I.P, Shanghai Jiao Tong University, China

2 The Ohio State University, USA

3 The IMDEA Software Institute, Spain

CCS'18, Toronto, Canada
October 16, 2018

Crypto Attacks and Defenses

Key Reinstallation Attacks: Forcing Nonce Reuse in WPA2 @ CCS 2017

Existing Researches

Crypto misuse on Mobile platforms
• CryptoLint (Android) @ CCS 2013

• iCryptoTracer (iOS) @ NSS 2014

• NativeSpeaker (Android) @ Inscrypt 2017

Crypto algorithm identification
• Aligot @ CCS 2012

• CipherXRay @ TDSC 2012

• CryptoHunt @ Oakland 2017

Parameter extraction
• ReFormat @ ESORICS 2009

• Dispatcher @ CCS 2009

• MovieStealer @ Usenix Security 2013

Crypto Keys: the Utmost Secrets

Kerckhoffs's principle

• A cryptosystem should be secure even if everything

about the system, except the key, is public

knowledge

Attacks against crypto keys

Lest we remember @ 2009 Heartbleed @ 2014 Foreshadow @ 2018

How do we find insecure keys?

How do we find insecure keys?

Key with inadequate randomness

How do we find insecure keys?

Forget to clean the used key buffer

Cases of insecurely used crypto keys

Key generation Key derivation Key operating Key cleaning

The entire lifetime of a crypto key

• Deterministically generated keys (DGK)

Cases of insecurely used crypto keys

Key generation Key derivation Key operating Key cleaning

• Deterministically generated keys (DGK)

• Insecurely Negotiated Keys (INK)

The entire lifetime of a crypto key

Cases of insecurely used crypto keys

Key generation Key derivation Key operating Key cleaning

• Insecurely Negotiated Keys (INK) • Recoverable Keys (RK)

The entire lifetime of a crypto key

• Deterministically generated keys (DGK)

Crypto Program Analysis

1. Locating the used ciphers

Crypto Program Analysis

1. Locating the used ciphers

2. Understanding semantics of memory buffers

Crypto Program Analysis

1. Locating the used ciphers

2. Understanding semantics of memory buffers

3. Analyzing key derivation

Crypto Program Analysis

1. Locating the used ciphers

2. Understanding semantics of memory buffers

3. Analyzing key derivation

4. Checking whether the used key is cleaned

Challenges

Code and algorithm diversity

• Proprietary ciphers

• Customized implementations

Challenges

Code and algorithm diversity

• Proprietary ciphers

• Customized implementations

Code complexity

• Large code base

• Boundary identification of crypto functions

Challenges

Code and algorithm diversity

• Proprietary ciphers

• Customized implementations

Code complexity

• Large code base

• Boundary identification of crypto functions

Semantic recovering

• Deciding which memory buffers are crypto keys

Our insights

Instead of identifying crypto algorithms (e.g., RSA)

• We pinpoint basic blocks related to

crypto transformations directly

Our insights

Instead of identifying crypto algorithms (e.g., RSA)

• We pinpoint basic blocks related to crypto

transformations directly

Instead of analyzing program binaries

• We analyze execution traces to pinpoint

crypto buffers

Our insights

Instead of identifying crypto algorithms (e.g., RSA)

• We pinpoint basic blocks related to crypto

transformations directly

Instead of analyzing program binaries

• We analyze execution traces to pinpoint

crypto buffers

Instead of statically finding specific misuses

• We dynamically detect insecure key

K-Hunt

Binary code instrumentation based on Intel’s PIN framework

Support x86/64 binary executables on Windows, Linux, and

MacOS

Comprises of two phases: key pinpointing and insecure key

detecting

Key Pinpointing

Step-I: Crypto Basic Block Identification

• Arithmetic instructions as features

• Using multiple inputs to find data sensitive instructions

• Randomness test

Key Pinpointing

Step-I: Crypto Basic Block Identification

• Arithmetic instructions as features

• Using multiple inputs to find data sensitive instructions

• Randomness test

Step-II: Crypto Key Buffer Identification

• Buffer size analysis

• Execution context analysis

Insecure Key Detecting

Taint-analysis based detection

Insecure Key Detecting

Taint-analysis based detection

1. whether adequate entropy
 has been collected

Insecure Key Detecting

Taint-analysis based detection

2. whether both a remote input and a
local input are involved

1. whether adequate entropy
 has been collected

Insecure Key Detecting

Taint-analysis based detection

1. whether adequate entropy
 has been collected

3. whether the key buffer
is properly cleaned after
the crypto operation

2. whether both a remote input and a
local input are involved

Experiments

• 10 libraries, three ciphers (AES,

RSA, ECDSA)

• 15 programs with variously

implemented ciphers

(Including proprietary ciphers)

•Crypto Libraries •Crypto programs

Key Identification Results

• B1: candidate basic blocks that
contain a high arithmetic instruction
ratio;

• B2: subset of B1 candidate basic
blocks with a linear relation with the
input size;

• B3: identified crypto basic blocks
• N: identified key buffers
• S: total size of the identified key

buffers
• IL: input length of the identified key

buffers.

Key Identification Results

• For 10 crypto libraries and 15
crypto programs, we successfully
detected frequently used ciphers
and their key buffers

• Proprietary ciphers and
customized implementations of
standard ciphers were detected

• Key buffers with different layouts
are all pinpointed

Performance Overhead

 Runtime overhead (times) of three pintools of K-Hunt compared to null PIN

Detected Insecurely used keys

• 22/25 tested samples are found
to use insecure keys!

• Even well-developed crypto
libraries ignore the key cleaning

• DGK in proprietary encryption
and verification schemes

• INK in certificate-less network
communication

• NMZ: null memory zeroing
• MMZ: manual memory zeroing
• RKPS: recoverable key in program stack
• RKPH: recoverable key in program heap

Case Study: DGK in Imagine

“a hard-coded k leads an attacker to
compute the private key x with a legal
pair of signature (r, s), and thus to
forge the signature”

Imagine (an image and animation viewer)
uses DSA as its registration algorithm

DSA Signing

DSA Verifying

Case Study: RK in Libsodium

We have made responsible disclosure to the vulnerable software vendors
and some of them quickly addressed the issue.

Unfortunately, some software vendors did not even response...

Libsodium’s patch against insecurely used AES round keys:
https://github.com/jedisct1/libsodium/commit/28cac20a7bedd2ff35379874e63a33f6168ba31a

Conclusion

K-Hunt , a dynamic analysis system to detect

insecurely used keys in binary code, is developed

Three types of insecurely used crypto keys (DGK, INK,

RK) are detected using K-Hunt

Insecurely used keys are found in both crypto

libraries (e.g., Libsodium) and crypto programs (e.g.,

Keepass)

Fortune cookie

A challenge related to the DSA case study

• placed in K-Hunt’s Github repository

• https://github.com/gossip-sjtu/k-hunt

First 10 people to solve the challenge would

receive a gift

• Get the gift at the Ant financial desk outside

Email the answer to loccs@sjtu.edu.cn

Thank you & Questions?

We also build new crypto libraries:

• YogCrypt — Chinese standard ciphers (SM2, 3, 4) in Rust

• https://yogcrypt.org

• YogSM — Chinese standard ciphers (SM2, 3, 4) with Intel’s new hardware

instructions

• https://yogsm.org

x

x

