
Android App Protection via Interpretation
Obfuscation

Junliang Shu, Juanru Li, Yuanyuan Zhang and Dawu Gu
Lab of Cryptology and Computer Security

Shanghai Jiao Tong University
Shanghai, China,

Abstract—To protect Android app from malicious reproduc-
tion or tampering, code obfuscation techniques are introduced
to increase the difficulty of reverse engineering and program
understanding. Current obfuscation schemes focus more on the
protection of the meta information over the executable code
which contains valuable or patented algorithms. Therefore, a
more sophisticated obfuscator is needed to improve the protection
on the executable code.

In this paper we propose SMOG, a comprehensive executable
code obfuscation system to protect Android app. SMOG is
composed of two parts, an obfuscation engine and an execution
environment. The obfuscation engine is at software vendor’s side
to conduct the obfuscation on the app’s executable code, and then
release the obfuscated app to the end-user along with an execution
token. The execution environment is setup by integrating the
received execution token, which endows the Android Dalvik VM
the capability to execute the obfuscated app.

SMOG is an easily deployed system which proves fine-grained
level protection. The obfuscated app generated by SMOG could
resist static and dynamic reverse engineering. Moreover, the
benchmark result shows SMOG only costs about 5% more
performance in dispatching the incoming bytecode to the proper
interpreter.

I. INTRODUCTION

Android apps face numerous threats once published. A
paid app might be stolen, illegally copied, and made available
for download in alternative locations. A free app might be
exploited, causing damage to a brand and leveraging valu-
able product resources like server bandwidth. All apps are
vulnerable to tampering, resulting in rogue downloads with
embedded malware, or using knowledge learned to hack a
server or other underlying service. Many factors help the
attacker reverse engineer Android app for theft of intellectual
property via software piracy: First, the Android devices are
relatively open to end-users. User can easily unlock a device,
apply for high privilege, acquire and analyze the app. Second,
the management of Android app installation is loose. Unlike
iOS which only allows the installation from the AppStore,
Android allows app installation via third party app market
or downloaded executable files. So pirate or modified apps
can be distributed by malicious user and attacker. Third, most
of the Android apps are programmed using Java and then
compiled into bytecode which is a relatively semantic-rich

This work is supported by The National Key Technology R&D Pro-
gram(2012BAH46B02), National Science and Technology Major Projects
(Grant No.2012ZX03002011), and Technology Innovation Project of Shanghai
Science and Technology Commission (No.13511504000).

form compared with x86 binaries, therefore Android apps are
susceptible to decompilation attacks.

Since Android app is an easily reproduced product, its
protection must rely on some form of active schemes such
as code obfuscation. The obfuscation work for Android app
faces challenging issues. Existing obfuscation schemes for
Android app aim at information hiding. They either hide
the meta information like identifiers and strings or transform
the original control flow to a more complex one. But if an
attacker has the capability of dynamically analyzing the app on
Android, the interpretation of the app is exposed and the code
is disassembled anyway. In this situation, existing schemes
cannot protect the executable code of the app and essential
information for program understanding is leaked out.

In this paper we propose SMOG, a comprehensive pro-
tection system based on obfuscated interpretation. SMOG
consists of an obfuscation engine and an execution environment
provided for both vendors and the end-users. The obfuscation
engine of SMOG obfuscates the executable code of an app,
then releases an obfuscated app with an execution token. The
execution token is an Android update package that contains
an enhanced SMOG interpreter. This token will be used by
end-user to build a specific execution environment to execute
the obfuscated app.

The core concept of SMOG is obfuscated interpretation. In
detail, SMOG obfuscates one Android app into a proprietary
form with opcode re-mapping and provides an enhanced
interpreter for program interpretation. The app’s bytecode is
permuted according to a randomly chosen permutation matrix
and thus is well protected. The permutation matrix is then
used to generate an enhanced interpreter which is the core of
the execution token. When the app is executed, the original
interpretation process is also permuted and is hard to under-
stand. The variant of the interpreter is numerous according to
the space of the permutation matrix. An attacker can hardly
employ brute force attack to find the correct matrix and reveal
the protected opcode.

Our proposed system has the following advantages com-
pared with existing obfuscation schemes:

• SMOG is the first system that attempts to implement
opcode re-mapping method for Android’s interpreta-
tion obfuscation. Opcode re-mapping technique has
been adopted by existing x86 softwares and is proven
to be a simple and effective obfuscation method.
SMOG obfuscates dex bytecode of Android apps di-
rectly, other than obfuscates the original source code.

• SMOG aims at comprehensive protection of Android
apps. Current Android obfuscation schemes are mainly
designed for resisting static analysis but leaving out
the bytecode semantics. SMOG could resist not only
static analysis but also dynamic analysis because the
obfuscated bytecode cannot be interpreted by normal
interpreter. Without the knowledge of the opcode
permutation, the execution process is obfuscated and
makes attacker hard to employ dynamic analysis and
extract information.

• The obfuscation technique of SMOG is efficient and
stable based on the observation of how Dalvik VM
works[1][2]. SMOG provides an independent execu-
tion environment for efficiently executing obfuscated
apps. Its enhanced interpreter replaces the Dalvik
VM’s interpreter to support permutation based obfus-
cated interpretation. This design simplifies the gener-
ation of the obfuscated app and the interpreter, and
only incurs reasonable overhead. What’s more, while
many obfuscation tools need first transfers the dex
file into intermediate code format to obfuscate it, our
permutation based obfuscation directly operates on
the Dalvik bytecode and reduces potential bug and
compatibility problem.

II. THE SMOG OBFUSCATION SYSTEM

VendorVendor

Token
Generator

Execution Token

Apk
Obfuscator

Obfuscated App App Setup

App Execution

Environment
Setup

End-user

Obfuscation Engine

Execution Environment

Fig. 1. SMOG Architecture

A. SMOG Overview

As depicted in Figure 1, the SMOG system is proposed as
a software protection framework within which an obfuscation
engine and an execution environment are provided for both
software vendors and the end-users. We first focus on the high
level description of SMOG’s architecture and how the envi-
ronments are used by apps. Then, the obfuscation mechanism
is discussed in more details.

B. Obfuscation Engine

The obfuscation engine consists of two modules, an apk
obfuscator and a token generator. The apk obfuscator is one
of the core modules in SMOG which transforms an existing
normal app into an obfuscated file through a specific permuta-
tion handler. The obfuscated engine receives a source program

in the form of an apk file. Then the apk file is unpacked and the
dex part is obfuscated according to the chosen matrix by the
permutation handler. However, the other resource files, such
as XML and image files, will remain unmodified in general.
After obfuscation, the engine will re-pack and re-sign the files
into an obfuscated apk file.

The obfuscation engine contains two major modules, an
apk obfuscator and a token generator. As the kernel of SMOG,
the function of the obfuscation engine is to handle source apps
to provide the resistance to static analysis and generate an
execution token which helps end-users to build an execution
environment for obfuscated apps.

unpack

Dex Parser

Permutation
Handler

re-sign, repack

Dex Generator

Resource FilesResource Files

Source App

Source Dex File

Obfuscated Dex File

Obfuscated App

...
Bytecode:dc00 0802

< rem-int/lit8 v0, v8, #int 2 // #02>
Bytecode:3900 3f00

< if-nez v0, 00b1 // +003f>
...

...
Bytecode:1200 0802

< const/4 v0, #int 0 // #0>
Bytecode:0e00 3f00

<return-void>
...

Fig. 2. Overviews of the Apk Obfuscator module

1) Apk Obfuscation: The task of apk obfuscator is to
obfuscate source app. The process is shown in Figure 2. The
first step is to choose the obfuscation target apk file. An apk file
contains an dex file and resource files such as XML, images,
etc. Because the resource parts do not carry vital program
logic, so they are not to be obfuscated by SMOG. Vendors
however could encrypt these parts in app’s code.

The dex parser is one of the core components of the apk
obfuscator, it is designed to parse and retrieve the necessary
information from the dex file. While an Android app is
released, the class files are converted into a single dex file.
That means all the instructions of an Android app can be
found in its dex file. The dex file represents the core part of
a program, so the main function of dex parser is to retrieve
the instructions(Dalvik bytecode) in the dex file, and forward
them to the permutation handler.

The permutation handler is the calculation unit of the
apk obfuscator. Each Dalvik instruction has two parts: opcode
and operands. The opcode part specifies the operation to be

performed. For each instruction delivered from the dex parser,
the permutation handler permutes it by calculation through a
permutation matrix. A permutation matrix is an n× 2 matrix
on Dalvik opcode set I, where n refers to total types of Dalvik
opcodes. Each matrix decides a permutation on I. It helps
to build a bijection (bijective mapping) from Dalvik opcode
collection to itself. Calculated through the permutation matrix,
each opcode is permuted into another one.

A permutation matrix is essentially a rearrangement of
the Dalvik opcode collection. The number of the available
permutation matrices is determined by the number of Dalvik
VM opcode collection n. For instance, in Android 4.1.1,
Dalvik’s ISA contains about 300 different opcodes, so the
number of alternative permutation matrices is more than 300!.
Therefore, the complexity of guessing the matrix is n!, and
the complexity on reversing obfuscated dex file is also n!.

Bytecode：1301 3000
Instruction: const/16 v1, #int 48 // #30

1 3 0 1 3 0 0 0

00 01 02 ... 13 14 ... 1FF

08 12E 1B ... 23 164 ... B5

2 3 0 1 3 0 0 0

Bytecode：2301 3000
Instruction: new-array v1, v0, [F // type@0003

Permutation Matrix

opcode

operands

Fig. 3. An example on a bytecode permutation

Figure 3 gives an example of the bytecode permutation
process. The Bytecode 1301 3000 which represents the
instruction

const/16 v1,\#int 48 // \#30

turns into another bytecode 2301 3000 after the permuta-
tion, which represents instruction of

new-array v1, v0 [F // type@0003

and the combination of permuted opcodes cannot be inter-
preted by normal interpreter of original Dalvik VM but the
interpreter released by SMOG. Therefore, when an attacker
attempts to reverse the obfuscated dex file, she could only ac-
quire the permuted dex file without any semantic information.

The dex generator will be invoked to create the new dex
file after the permutation is finished. Additional information
is appended to the dex file to help execute the code, which
includes, 1) some specific information to identify if the app
is obfuscated, and 2)a checksum value, calculated from the

permutation matrix, which helps assign different dex files to
corresponding interpreters.

After the parsing, permutation and generation on the dex
file, the obfuscation engine re-signs and re-packs the dex file
along with other unmodified resource files, and then releases
the obfuscated app.

2) Execution Token: The execution token is released by
SMOG for target device of the end-user to update the execution
environment, and uniquely matches the obfuscated apps. An
execution token contains a signed enhanced interpreter and
system patches for adding execution policies of the obfuscated
app. The mission of the execution token is to install an
enhanced interpreter to the target Android Dalvik VM to
execute the obfuscated apps. Along with this apk file, an
execution token is distributed to the end-user to setup an
execution environment to ensure the code can only be executed
on the target device. After the execution token is installed on
the target Android device, end-user could enable the execution
environment for the obfuscated app.

The core concept of SMOG is interpretation obfuscation.
Instead of downloading and executing a normal app, the
SMOG system would allow software vendors pre-process its
dex file to generate an obfuscated apk file to tackle malicious
reverse engineering attempts. A normal Dalvik VM cannot
comprehend this obfuscated apk file. Therefore, the execution
token together with the obfuscated app decide the unique
execution environment for an end-user.

The core part of the token is the enhanced SMOG inter-
preter that conducts the mapping from the permutated instruc-
tions to the original ones. It is designed to execute obfuscated
apps. Therefore, the instructions of obfuscated apps that have
been shuffled by the permutation matrix are capable of running
by the interpreter. The enhanced interpreter provides a mapping
implementation of each Dalvik VM opcode according to the
specific permutation we did on instructions. As introduced
in section2.1, Dalvik VM uses a single function with many
handlers to interpret different opcodes. It would be easier to
inverse permutation using the implementation in Figure 4(left),
using a reversed permutation matrix before each instruction has
been dispatched to their handler. So, the obfuscated instruction
flow will revert back to the original flow. However, this method
is likely to reveal the token by the reverse engineering means.
Therefore, an improved implementation is proposed as in
Figure 4(right). Instead of explicitly adding the matrix into
the interpreter, we implement the process of the interpretation
by redefining the opcode handlers. The content of each op-
code handler has been changed according to the permutation
matrix. In this case, the attacker have to investigate the whole
decompiled code to find out the corresponding opcode, which
requires a thorough comprehension of Dalvik VM interpreter
and skillful reverse engineering techniques. This to some
extent ensures the security of the permutation matrix.

In an typical Android app setup procedure, there are
three tasks: installation, optimization, and pre-verification, as
depicted in Figure 5. On a normal Dalvik VM, an optimization
procedure on the dex file is carried out right after the apps
installation. That might cause the obfuscated app unable to
be executed. Therefore, to support our obfuscated apps and
interpreter to work on an Android device, the original app

Inverse Permutation

Obfuscated Instruction Flow

switch(opcode)：
 //Instruction function list

 HANDLE_OPCODE_CONST：
u4 tmp;
vdst = INST_AA(inst);
tmp = FETCH(1);
tmp |= (u4)FETCH(2) << 16;
SET_REGISTER(vdst, tmp);
break;

 HANDLE_OPCODE_GOTO:
vdst = INST_AA(inst);
if ((s1)vdst < 0)
PERIODIC_CHECKS((s1)vdst);
break;

 more functions...

obfuscated instruction

original instruction

Inverse
Permutation

Matrix

Im
p

lem
en

tatio
n

 1

Obfuscated Instruction Flow

switch(opcode)：
 /*re-defined Instruction function list
 for inverse permutation*/

 HANDLE_OPCODE_CONST：
ArrayObject* arrayObj;
vdst = INST_A(inst);
vsrc1 = INST_B(inst);
arrayObj = (ArrayObject*)
SET_REGISTER(vdst, arrayObj);
break;

 HANDLE_OPCODE_GOTO:

Object* obj;
vsrc1 = INST_AA(inst);
obj = GET_REGISTER(vsrc1);
EXPORT_PC();
dvmLockObject(self, obj);
break;

 more functions...

obfuscated instruction
not

safe!!

Im
p

lem
en

tatio
n

 2

Fig. 4. Two Implementations on the Enhanced SMOG Interpreter

Enhanced
Interpreter

Execu
tio

n
 En

viro
n

m
en

t

App Setup

App Execution

Obfuscated
App

Optmization

Pre-Verification

Installation

Environment
Setup

Execution token

Fig. 5. Overview of the Execution Environment

installation process is to be modified. We patched the nor-
mal dex optimization function to work with the obfuscation
process. As elaborated in previous sections, the dex generator
adds some specific marks and checksum to the dex file. To use
these extra information, we make some changes to the Android
pre-verification process. Then, the execution environment will
choose the proper interpreter, say the SMOG interpreter, to run
the obfuscated apps.

The token generator is utilized to generate the enhanced
SMOG interpreter and modified system source code,then com-
pile them into the final execution token. This execution token
will help the end-user setup a correct execution environment to

run the obfuscated apps. In this process, the enhanced SMOG
interpreter and modified system source code will be compiled
into a Dalvik VM core lib file named libdvm.so. The so file
is compiled from Android native code, reverse engineering
towards such file is quite hard and that increase the security of
permutation matrix. At last, libdvm.so will be packaged into
execution token with some other verification information.

C. App execution

App execution is conducted by the enhanced interpreter of
specific execution environment, referring to Figure 5. Though
an obfuscated dex file has a specific instruction structure which
can not be comprehended by normal interpreter, the enhanced
interpreter which has already permuted the opcode interpreting
function can guarantee the correctness of executing the app.
Given bytecode set C, permutation f, inverse permutation f ’,
the matrix M and the enhanced interpreter EIM , there exists

F ′(F (C,M), EIM) = C

So, the obfuscated bytecode will be interpreted as meaningful
instructions under obfuscated interpretation.

The enhanced interpreter to support obfuscated interpre-
tation is based on the original portable interpreter. In Dalvik
VM the fast and the portable interpreter can be switched dy-
namically. SMOG takes advantage of this mechanism. SMOG
only modifies the portable interpreter of the Dalvik VM. When
the obfuscated code is to be executed, the modified Dalvik
VM first identifies which part of code is to be executed, and
switches to the enhanced interpreter responsible for interpret-
ing the obfuscated code.

The environment setup is a quite simple process. While
end-user get execution token through vendors, she is able to
use this token to patch her system automatically. After that,
the files in the token will replace the same files in the target

Android system. Then the setup process is completed. New
system not only inherits all the functions of original system,
but also has the ability to execution obfuscated apps.

III. EVALUATION

In the following, we provide an analysis of security and
overhead of SMOG.

A. Security Analysis

Our design contains following security considerations: 1)
The obfuscation scheme can resist not only static disassem-
bling but also dynamic reverse engineering. 2) The malicious
leakage of obfuscation details hardly affects our scheme’s
security.

1) Resistance to Reverse Engineering: Static reverse engi-
neering is unavailable to analyze our obfuscated apps because
the semantic information is hidden by the permutation. If
an adversary wants to perform instruction level analysis, and
further to reconstruct the structure of original app and allows it
to be executed on other devices, she must understand the per-
mutation first and then reconstruct a dex file, which is a manual
reverse engineering work and very time-consuming. We use the
state-of-the-art reverse engineering tool IDA pro[3] to evaluate
the strength of SMOG resisting to static disassembly. While
IDA Pro is able to disassemble the original app’s bytecode, the
result for the obfuscated version shows that the disassembler
fails to work. The obfuscated app can resist static analysis
effectively because SMOG permutes the bytecode. We further
use disassembler(including dexdump, baksmali[4], Dedexer[5],
Androguard[6]) and decompiler(including jad[7], jd-gui[8] and
ded[9]) to test our obfuscated app. None of these tools can
deal with the obfuscated app correctly. The result shows that
SMOG makes the standalone static analysis impossible.

To employ dynamic analysis based reverse engineering
and deduce the permutation matrix from the interpretation the
attacker must overcome two obstacles: First, it is difficult to
dynamically analyze the execution environment. The enhanced
interpreter is integrated into Android’s core runtime – Dalvik
VM and is protected with the benefit of device’s protection
mechanism. Debugging or tampering it is forbidden. Second,
even the interpreter is acquired and dynamically analyzed, the
reverse engineering of a permuted interpreter is much harder
than that of an app. We do not expect our system is perfect
secure against advanced analysis, but the discussed defending
strategy can thwart most reverse engineering attempts.

2) Resistance to Re-distribution: SMOG generates dif-
ferent interpreters for different devices. Malicious user who
wants to re-distribute the app must transplant the execution
environment as well. The execution token is dependent on
the device’s IMEI and pirate execution token can not be
installed arbitrarily. Another way is via recovering the secret
permutation and then de-obfuscating the app. A brute force
searching is obviously unrealistic for the permutation matrix
is random chosen by vendor and is kept secret to end-users.
But to reverse engineer the execution environment and find the
permutation involves first identifying more than 300 functions
corresponding to each opcode of the Dalvik VM and then
rebuild the permutation. One interpreter contains about 16000

lines of assembly code(ARM) and to the best of our knowl-
edge, there’s no automatic reverse engineering techniques for
this function identification and permutation recovery process.
Thus the manual work is time-consuming. And even the
interpreter is understood and the permutation is found, attacker
could only break one app’s protection among 300! possible
permutations. Vendor could change the permutation for another
app to defeat the leakage threat.

3) Tamper Proofing: An importance aspect of protection
is tamper proofing of the execution environment. SMOG takes
advantage of Android’s system integrity protection mechanism
to prove it. First, the execution token is signed. If the attacker
modifies the token, it can’t be installed due to the failure of
the integrity verification. Second, the enhanced interpreter is a
privileged system component integrated to the Dalvik VM. It is
protected by system’s privilege isolation mechanism, therefore
the runtime security is kept.

B. Performance

While having the ability to prevent program from being
reversed by both static and dynamic analysis technology, any
such system would be impractical if the approach induced
high overhead. We use suite 0xbenchmark[10] to test the
performance overhead introduced by SMOG. The evaluations
are carried out on two both emulator and real mobile device.
We use an Android 4.1.1 emulator running on a PC of 2G
RAM and a 64-bit Ubuntu (10.04). The emulator was allocated
256MB of memory and 1GB SD card. The authentic mobile
device is a Nexus 7 tablet running Android 4.1.2. It has a
1.3GHz Tegra3 CPU and 1GB RAM.

In the evaluation, we carefully monitor various aspects
of performance. The computing ability, including MFlops/s,
composite, fast Fourier transform, Jacobi Successive Over-
relaxation, Monte Carlo integration, sparse matrix multiply,
dense LU matrix factorization are tested. The garbage collec-
tion test is to evaluate the overhead of the VM. And we run
Sun Spider to test JavaScript performance.

The benchmark suite is conducted to evaluate the executive
overhead in three different scenarios.

• Scenario 1: an original 0xbenchmark is running on
an normal Android system with fast interpreter as the
performance base.

• Scenario 2: an original 0xbenchmark is running on an
normal Android system with portable interpreter as the
performance base.

• Scenario 3: an original 0xbenchmark is running on an
SMOG execution environment.

• Scenario 4: an SMOG obfuscated 0xbenchmark is
running on an SMOG execution environment.

Figure 6(a) is the benckmark result on Nexus 7 tablet, and
Figure 6(b) shows the observed value on the official emulator
in Android SDK. The performance value of Scenario 1 and
Scenario 2 is chosen as the base value for comparison. As
we can see in Figure 6(b), there is no significant performance
loss on the emulator. In contrast, Figure 6(a) suffers greater
performance loss due to the performance advantages of fast

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Scenario1

Scenario3

Scenario4

P
er

fo
rm

an
ce

 O
ve

rh
ea

d

(a) Nexus 7

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Scenario2

Scenario3

Scenario4

P
er

fo
rm

an
ce

 O
ve

rh
ea

d

(b) Emulator

Fig. 6. Performance Overhead of SMOG

interpreter on real device. The performance on SMOG execu-
tion environment of mathematical operation, such as Mflops/s,
Composite, FFT, JSOr, MCi, Smm and dLmt, are close to 50%
slowdown on Nexus 7, while the JavaScript is less than 1%
and VM less than 20% performance loss.

We notice that the mathematical benchmark involves dense
arithmetic operations, so it goes through more permuted in-
structions than the JavaScript and VM benchmark tests. While
running the VM test, on the contrary, invokes many external
functions which is not the obfuscation target of SMOG. So the
performance slowdown by SMOG depends on the proportion
of these instructions in the app. The performance loss in VM
and JavaScript testing results reveal that our system will not
bring inconvenience to end-user experience, but only becomes
noticeable while doing a large amount of computation.

Running a program on the SMOG execution environ-
ment(Scenario 3 and Scenario 4) is always slower than on
an original Android system(Scenario 1 and Scenario 2). The
performance slowdown is caused by SMOG execution envi-
ronment’s modification to system. There also exists the per-
formance gap between Scenario 3 and Scenario 4. The SMOG
execution environment costs about 5% more performance in
dispatching the incoming bytecode to the proper interpreter.

IV. CONCLUSION

This paper proposed a novel Android app protection system
SMOG, based on obfuscation interpretation, which makes it
difficult for an attacker to reverse engineer the obfuscated app.

We have described the architecture of an Android apps
protection system SMOG to enhance the protection on the
valuable or patent algorithms inside the Android apps. It
requires an integration of many mechanisms including an
obfuscation engine and an installation of an execution envi-
ronment. The obfuscation engine is responsible for releasing
an obfuscated app and making it difficult for an attacker to
conduct reverse engineering, and a corresponding execution
environment on the end-user’s device is provided to run the
obfuscated apps.

The security analysis results proves that the obfuscation
engine provides the obfuscated apps the resistance to reverse

engineering. Besides, using experiments on both real device
Nexus 7 tablet and Android emulator the SMOG execution
environment correctly executes the obfuscated app with ap-
proximately 5% performance loss.

REFERENCES

[1] D. Bornstein, “Dalvik vm internals,” in Google I/O Developer Confer-
ence, vol. 23, 2008, pp. 17–30.

[2] “Code and documentation from android’s vm team,”
http://code.google.com/p/dalvik/.

[3] Hex-rays, “Ida pro,” http://www.hex-rays.com/.
[4] “smali - an assembler/disassembler for android’s dex format,”

https://code.google.com/p/smali/ .
[5] G. Paller, “Dedexer,” http://dedexer.sourceforge.net/ , 2012.
[6] A. Desnos and G. Gueguen, “Android: From reversing to decompila-

tion,” 2011.
[7] “Jad java decompiler,” http://www.varaneckas.com/jad/ .
[8] “Java decompiler,” http://java.decompiler.free.fr/?q=jdgui .
[9] W. Enck, D. Octeau, P. McDaniel, and S. Chaudhuri, “A study of

android application security,” in Proceedings of the 20th USENIX
Security Symposium, vol. 2011, 2011.

[10] 0xBench, “Comprehensive benchmark suite for android,”
http://code.google.com/p/0xbench/downloads/list .

