Security Testing of Software on Embedded
Devices Using x86 Platform

Yesheng Zhi®™) | Yuanyuan Zhang, Juanru Li, and Dawu Gu

Lab of Cryptology and Computer Security,
Shanghai Jiao Tong University, Shanghai, China
zleaves0818Qgmail.com

Abstract. Security testing of software on embedded devices is often
impeded for lacking advanced program analysis tools. The main obstacle
is that state-of-the-art tools do not support the instruction set of common
architectures of embedded device (e.g., MIPS). It requires either devel-
oping new program analysis tool aiming to architecture or introducing
many manual efforts to help security testing. However, re-implementing a
program analysis tool needs considerable amount of time and is generally
a repetitive task. To address this issue efficiently, our observation is that
most programs on embedded devices are compiled from source code of
high level languages, and it is feasible to compile the same source code to
different platforms. Therefore, it is also expected to directly translate the
compiled executable to support another platform. This paper presents a
binary translation based security testing approach for software on embed-
ded devices. Our approach first translates a MIPS executable to an x86
executable leveraging the LLVM-IR, then reuses existing x86 program
analysis tools to help employ in-depth security testing. This approach is
not only efficient for it reuses existing tools and utilizes the x86 platform
with higher performance to conduct security analysis and testing, but
also more flexible for it can test code fragment with different levels of
granularity (e.g., a function or an entire program). Our evaluation on
frequently used data transformation algorithms and utilities illustrates
the accuracy and efficiency of the proposed approach.

Keywords: Security testing - Binary translation - Embedded device -
Binary analysis

1 Introduction

Security and privacy is considered as a significant requirement in embedded sys-
tems, especially considering that most of them are provided to system networks,
private networks, or the Internet. However, the specialization of embedded sys-
tem often comes with one or more inherent characteristics [9,10], which make

Partially supported by Major program of Shanghai Science and Technology Com-
mission (Grant No: 15511103002).
© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2017

S. Wang and A. Zhou (Eds.): CollaborateCom 2016, LNICST 201, pp. 497-504, 2017.
DOI: 10.1007/978-3-319-59288-6_47

498 Y. Zhi et al.

security analysis and testing on embedded systems significantly stricter than on
traditional commodity systems.

One way to employ security analysis is to leverage hardware debugging
interface. This way requires dedicated hardwares and extreme resource require-
ments, therefore it can not be widely used in off-the-shelf embedded devices. To
address, another way is leveraging dynamic binary translation (e.g., QEMU [4],
Avatar [13]) to simulate and execute the binary program on PC system. The
main drawback of dynamic binary translation is the large overhead of runtime
translation and runtime optimization. Furthermore, for short-running programs,
especially for interactive applications that are common on mobile devices, start-
up time and response time are critical to their performances.

Consider that most state-of-the-art researches only focus on the x86 instruc-
tion set, and implement mature security tools. However, a embedded system
usually uses specific instruction set architectures (ISAs), e.g., MIPS, etc. We
implement an framework, BABELF'ISH, to reuse these well-developed testing tools
for x86 architecture. By using mature security tools we can give a more efficient
and accuracy analysis. Meantime, our work can apply more complex analysis
and optimizations without large overheads, unlike dynamic translation. In our
approach, we leverage a translator to lift MIPS binary to IA-32 architecture. In
order to guarantee the accurate testing results, a fine-translated code should be
provided by the binary translator. This code is evaluated from two aspects, code
correctness and runtime efficiency:

(1) Code Correctness: The most important point is that the testing results pro-
vided by our framework should be consistent with those generated by test-
ing tools working on MIPS binary directly. To ensure the code correctness,
a good translator should translate 100% of the code if desired. Meanwhile,
the translator should recover the correct control flow.

(2) Runtime Efficiency: We would like to provide optimized translated code
that can perform similar with the native code. Unlike existing static binary
translator, we make an improvement on translating register operations to
improve efficiency of translated code.

2 System Design

We design BABELFISH, a framework to support security testing of MIPS
binary (as presented in Fig. 1). The input of our framework is a stripped MIPS
binary (without any symbol information and debug information). BABELFISH
first translates the MIPS binary code to LLVM-IRs [1] statically.

Our approach provides two levels of security testing: the whole binary and
specific functions in binary. Dealing with the whole binary, the translator will
translate all necessary functions in MIPS binary. If we want to focus on testing
some specified functions in MIPS binary, the translator of our framework also
supports to translate part of functions in MIPS binary. The translator will only
translate specified functions and all invoked functions according to call graph by
static analysis.

Security Testing of Software on Embedded Devices Using x86 Platform 499

. Function
1 Pre-analysis (Information)
BMlPs || Disassembly to VEXIR [Ty Translator Translated LLVM 86
inary VEX block LLVM-IRs Backend Binary
Dumped Testing
Data tool

Fig. 1. Overview of BABELFISH

The module of LLVM-IRs, outputted by the translator, consists of all trans-
lated functions and global array variables of relocated data. This module will be
compiled by LLVM backend into an executable binary or an object file. The x86
executable binary can be passed to testing tools of x86 binary for completing
required security testing, like fuzzing, symbolic execution, taint analysis, etc.
The object file can be linked into a test program for following security testing
as well.

2.1 Challenge

Indirect Branch. During binary translating, translating branch instructions,
especially indirect branch instructions, is the key to preserve the accuracy of
recovered control flow. Unlike direct branch, it is difficult to find the destina-
tion address of an indirect branch until runtime. The control flow targets are
dynamically calculated based on some immediate values in assembly instruc-
tions, jump tables and other references stored in data section. Combined with
previous research [6], we first analyse the procedure of the indirect branch tar-
get calculation, and give a much accurate set of branch targets. With the set of
branch targets, BABELFISH implements indirect branch using the LLVM switch
instruction, depending on a mapping relation between target addresses of the
indirect branch and corresponding destination addresses in the translated code.

Data Relocation. The data stored in data section is also an important portion
in binary. The data will be dumped from data sections, and stored in arrays
as global variables. While storing the data into the array, we must solve the
relocatable problem. According to the research by Wang et al. [12], an immediate
value can be a reference only if this value locates at the address space allocated
for the binary. Here, We filter out references among all immediate values in data
sections based on their target address. This simple filter is sufficient to identify
concrete memory address. The immediate value as an operand in statements
should be filtered as well. Once a reference is found during translating, it will be
instantly replaced by the corresponding IR.

500 Y. Zhi et al.

2.2 Binary Translating

The assembly-level binary translator first gives a pre-analysis on MIPS binary,
utilizing an IDA script to export the information of function boundaries auto-
matically. We also obtain the dynamic relocation entries of the file through
objdump for dealing with the dynamic-link function calling.

With the pre-analysis results, we start to translate functions into LLVM-
IRs individually. In order to facilitate translating a function call in LLVM-IR,
we give a uniform form of translated function according to the most commonly
used calling convention for 32-bit MIPS, the 032 ABI [2]:

Ezxample of a Translated Function Described in C

uint32_t tranlated_func(const uint32_t args) {
// declare a array for the emulated stack frame
1: uint8_t stack[64];

// load arguments storing in array args

2: uint32_t arg0 = *(uint32_t *)args;

3: uint32_t argl = *(uint32_t *) (args + 4);

// store callee’s arguments to the stack array
4: *(uint32_t *)stack = call_arg0;
5: x(uint32_t *) (stack + 4) = call_argl;

// call callee_func with the base address of stack
// as its only parameter
6: uint32_t callee_ret = callee_func((uint32_t)stack);

At the beginning of each translated function, an array is allocated to com-
plete translating the operation on stack frame with the same length of stack
frame, and the translator loads the arguments from the address of array as the
translated function’s parameter (line 2-3). The length of stack frame is recorded
to distinguish operations on the arguments of target function in assembly code.
Subsequently, the translator follow the BFS ordering of function’s control flow
graph, and translated instructions in each basic blocks. Assembly code sequences
in a basic block are firstly translated into VEX-IR representation, and then VEX-
IR statements are translated into LLVM-IRs. VEX-IR abstracts binary code into
a representation in a unified way, and lists all assembly side-effects, which allows
for syntax-directed analysis.

During translating, we define the data type as integer or pointer type. What’s
more, the pointer variable is only used when we create it or we need to load /store
the value from it, by leveraging the ptrtoint and inttoptr instruction in LLVM-
IR. Once the translator get a pointer variable (e.g., like a memory reference or a
return value of some system call), it convert its type to the integer without change
its value using ptrtoint instruction. When we need to do load/store operation, we

Security Testing of Software on Embedded Devices Using x86 Platform 501

transfer the integer to a pointer, and then load the data that the pointer refers
to, or store the data in where the pointer refers to. Having such transformation
makes it convenient to do the other instruction translations, for their operands
are always integer ones.

BABELFISH sets shadow registers and shadow stack memory for each block
to record the data’s IR representation, data type, and the data value if it is
a immediate value. Data information is real-timely updated during translating.
The value stored in register may succeeds from previous blocks. Especially when
a register succeeds from two or more blocks, we need to add a phi instruction to
define its value at the beginning of this block. The phi instruction takes a list of
[(value), (block_label)] pairs as arguments, which is based on the data flow.

3 Evaluation

We evaluate BABELFISH with respect to its efficiency, the performance of trans-
lated code, and its capability to support program testing.

3.1 Experiments Setup

We tested BABELFISH with code fragments about typical data transformation
algorithms including cryptographic algorithm (AES, DES, RC4), hash algo-
rithm (MD5,SHA1), compress algorithm (Huffman) and sort algorithm (Quick
Sort, Bubble Sort). Besides, to understand the ability of translating a complete
executable, we study our translator’s performance on gzip in detail. All pro-
grams to be translated are compiled by GCC 4.6.3 for MIPS32 architecture in
little-endian, with the default configuration and optimization level -O2. We suc-
cessfully translated all listed functions to LLVM-IRs. Then we lift translated IR
to x86 assembly code using Clang 3.4. Finally, the translated x86 code is com-
pared with the natively-compiled x86 executable binary, compiled by Clang 3.4
with -O2 optimization level, for the performance evaluation. The experiments are
conducted on a machine with Intel Core i5-2320 @3 GHz running Ubuntu 14.04.

3.2 Translating Efficiency

Here, we only consider the time consumed by BABELFISH to translate MIPS code
to LLVM-IRs. Processing time for each binary code is presented in Table 1. As
expected, it takes more time to process larger functions. On average, BABELFISH
spends 0.137 s per function.

For gzip, there are 19 K instructions and totally 154 functions, and it takes
nearly 25s to translate the whole MIPS binary to LLVM-IRs.

3.3 Translating Quality

The quality of translated code generated by BABELFISH is evaluated from two
aspects: efficiency and correctness.

502 Y. Zhi et al.

Table 1. Characteristics of translating functions

Algorithm #Functions | #MIPS Insts | #IR Insts | Translation | x86 Insts
time (s) Expansion

AES 4 1370 2492 0.707 17%

DES 2 2059 2775 0.653 4%

RC4 2 585 1435 0.375 64%

MD5 3 1198 1511 0.465 9.8%

SHA1 3 2063 2384 0.626 —12%

Huffman coding | 4 191 392 0.197 15%

Quick Sort 2 62 159 0.084 11%

Bubble Sort 1 22 66 0.044 —19%

Total 21 7550 11214 3.154 7%

Correctness. We verify the correctness of BABELFISH by executing x86 bina-
ries involving the translated functions with test input to verify the functional-
ity. Semantic preservation is of significance to validity of testing the translated
binary. We use the test cases provided by OpenSSL to check functionality of
cryptographic functions and hash functions. As for Huffman coding and sort
functions, we develop input by ourselves to verify the major functionality. All
testing binaries pass the functionality tests without any error output.

Efficiency. The efficiency of translated code manifests from two aspect: size
expansion and the execution time.

Comparing the number of IR instructions with that of MIPS instructions, the
average expansion is 48% (shown in Table 1), considering with extra instructions
to convert temporary variable between pointer type and integer type as well as
the phi instructions. However, the size of x86 assembly code compiled from
translated IR is only 7% bigger than that native-compiled version.

Next, we examine the execution time of the translated code. We conduct
the executing of source MIPS binaries on QEMU [4] and the translated code
on host x86 machine directly. Figure2 shows the normalized execution time of
testing source MIPS binary and x86 test binary compared to its corresponding
native-compiled version. Test binaries on x86 have almost the same execution
time with the corresponding version compiled from source code. The translated
code is of runtime efficiency.

Similarly, we compare the translated gzip binary executable with the native-
compiled version. On one hand, the translated binary is 2.7 times larger than
the native-compiled one, while the .text section of the translated binary is 1.5
times the size of that in the native-compiled version. Consider that the data in
.bss and .sbss sections were dumped from source binary and then were initialized
to 0 during translation, whose size is around 322 kbyte. These data are stored
in .data section of output binary. As .bss and .sbss sections are not calculated

Security Testing of Software on Embedded Devices Using x86 Platform 503

[
(=4

m MIPS = x86

llLlllll

Huffman QuickSort BubbleSort

—_— = e
[-

Normalized Runtime
=

S N A N

Fig. 2. Normalized execution time of source MIPS binary on QEMU and x86 translated
binary compared to their natively-compiled version.

into the binary file size, the file expansion is acceptable. On the other hand,
the translated executable roughly imposes 4% performance overhead compared
with natively-compiled executable. The result shows that without any source
code information, we can achieve a translated CPU intensive program using our
framework, and such compiled binary have almost the same execution perfor-
mance with the native-compiled version. This capability is convenient for testing
a MIPS program by lifting it to an x86 version.

4 Related Work

Most security analysis and testing tools, mainly used for binary instrumentation,
rewriting, and debugging, are based on same-ISA translators. Avater [13] is a
framework to support dynamic security analysis of embedded devices’ firmwares
based on S2E [5], and it orchestrates the communication between an emulator
and a target physical device. PROSPECT [8] can provide an arbitrary analysis
environments, and enable dynamic code analysis of embedded binary code inside
the environments.

A static translator translates programs offline and can apply more exten-
sive (and potentially whole program) optimizations. Bansal et al. [3] propose
an efficient binary translation approach using superoptimization techniques.
DisIRer [7] uses machine descriptions of GCC in reverse to translate x86
instruction sequences into GCC’s low-level Register Transfer Language (RTL).
LLBT [11] is the effort relied on the LLVM infrastructure as well, but it trans-
lates ARM binaries into LLVM IRs.

504 Y. Zhi et al.

5 Conclusion

Since the lack of security testing tool in MIPS and the inconvenience of dynamic
emulation, we want to make use of the well-designed tools for x86 executable.
Therefore, we propose BABELFISH, a framework that translates the input MIPS
binary code to LLVM-IR statically, then uses LLVM compiler mapping the IR
code into IA-32. Subsequently, we can make all possible security testings of it. We
have developed a prototype version and evaluated it with several MIPS binaries.
Our experiments show that the translated binary code almost have the same
performance with those compiled from source code. The quality of translated
code is convenient for security testing.

References

1. The llvin compiler infrastructure. http://www.lllvm.org

2. MIPS32 Architecture For Programmers Volume II: The MIPS32 Instruction Set
(2001)

3. Bansal, S., Aiken, A.: Binary translation using peephole superoptimizers. In: Pro-
ceedings of the 8th USENIX Conference on Operating Systems Design and Imple-
mentation, pp. 177-192. USENIX Association (2008)

4. Bellard, F.: Qemu, a fast and portable dynamic translator. In: USENIX Annual
Technical Conference, FREENIX Track, pp. 41-46 (2005)

5. Chipounov, V., Kuznetsov, V., Candea, G.: The S2E platform: design, implemen-
tation, and applications. ACM Trans. Comput. Syst. (TOCS) 30(1), 2 (2012)

6. Fu, Y., Lin, Z., Brumley, D.: Automatically deriving pointer reference expressions
from binary code for memory dump analysis. In: Proceedings of the 2015 10th
Joint Meeting on Foundations of Software Engineering, pp. 614-624. ACM (2015)

7. Hwang, Y.-S., Lin, T.-Y., Chang, R.-G.: Disirer: converting a retargetable compiler
into a multiplatform binary translator. ACM Trans. Archit. Code Optim. (TACO)
7(4), 18 (2010)

8. Kammerstetter, M., Platzer, C., Kastner, W.: Prospect: peripheral proxying sup-
ported embedded code testing. In: Proceedings of the 9th ACM Symposium on
Information, Computer and Communications Security, pp. 329-340. ACM (2014)

9. Parameswaran, S., Wolf, T.: Embedded systems security—an overview. Des. Autom.
Embed. Syst. 12(3), 173-183 (2008)

10. Serpanos, D.N., Voyiatzis, A.G.: Security challenges in embedded systems. ACM
Trans. Embed. Comput. Syst. (TECS) 12(1s), 66 (2013)

11. Shen, B.-Y., Chen, J.-Y., Hsu, W.-C., Yang, W.: LLBT: an LLVM-based static
binary translator. In: Proceedings of the 2012 International Conference on Com-
pilers, Architectures and Synthesis for Embedded Systems, pp. 51-60. ACM (2012)

12. Wang, S., Wang, P., Wu, D.: Reassembleable disassembling. In: 24th USENIX
Security Symposium (USENIX Security 15), pp. 627-642 (2015)

13. Zaddach, J., Bruno, L., Francillon, L., Balzarotti, L.: Avatar: a framework to sup-
port dynamic security analysis of embedded systems’ firmwares. In: NDSS (2014)

http://www.lllvm.org

	Security Testing of Software on Embedded Devices Using x86 Platform
	1 Introduction
	2 System Design
	2.1 Challenge
	2.2 Binary Translating

	3 Evaluation
	3.1 Experiments Setup
	3.2 Translating Efficiency
	3.3 Translating Quality

	4 Related Work
	5 Conclusion
	References

