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ABSTRACT
Wi-Fi hotspot-based data clone services are increasingly used byAn-
droid users to transfer their user data and preferred configurations
while upgrading obsolete phones to new models. Unfortunately,
since the data clone services need to manipulate sensitive informa-
tion protected by the Android system, vulnerabilities in the design
or implementation of these services may result in data privacy
breaches. In this paper we present an empirical security analysis of
eight widely used Wi-Fi hotspot-based data clone services deployed
to millions of Android phones. Our study evaluates those services
with respect to data export/import, data transmission, and Wi-Fi
configuration with respect to security requirements that the data
clone procedure should satisfy. Since data clone services are closed
source, we design Poirot, an analysis system to recover workflows
of the data clone services and detect potential flaws. Our study
reveals a series of critical security issues in the data clone services.
We demonstrate two types of attacks that exploit the data clone
service as a new attack surface. A vulnerable data clone service
allows attackers to retrieve sensitive user data without permissions,
and even inject malicious contents to compromise the system.
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1 INTRODUCTION
Mobile phones nowadays store large amounts of sensitive user data
such as personal e-mails and account passwords. To protect against
security threats such as data theft and malware, mobile phones
and their operating systems (OSes) have introduced a number of
security protection mechanisms such as full disk encryption and
app data isolation to prevent unauthorized access. However, when
a user wants to transfer her data from an obsolete mobile phone
to a new one, the transfer process suffers from both usability and

1Juanru Li is the corresponding author.

privacy issues. With respect to usability, official data backup/restore
mechanisms of Android and iOS systems require either a cloud
drive (e.g., Google Drive and iCloud) or a desktop computer as an
auxiliary medium. Although users do not frequently replace their
mobile phone, 55.56% of them update to a new phone every 12
or 24 months. Such data backup/restore mechanisms are not only
inefficient but also inconvenient. With respect to privacy, exporting
sensitive user data to either a cloud drive or a hard disk raises
concerns of data abuse or data leakage.

To ensure a secure and smooth data migration, many Android
phone manufacturers developed a new cross-device data migration
solution — Wi-Fi hotspot-based data clone. By establishing a
private and temporary Wi-Fi network connection between two
mobile phones, user data are transferred between these two phones
directly. This approach achieves a high data transmission speed
without requiring the transferred user data to be stored at a third-
party medium. More importantly, system privileges are granted to
these data clone services so that they are allowed to access sensitive
user data (e.g., app login credentials stored at app sandboxes). Hence,
a large number of manufacturers embed the data clone service as a
default service in their mobile phones. Table 1 lists the number of
devices produced by the well-known manufacturers that would be
affected by the vulnerabilities we have identified.

Nonetheless, designing a secure data clone service is challeng-
ing because developers are not security experts and they focus
more on the usability of the software [36] instead of its security
complied with the Android security model [24]. Although most
data clone services claim to have addressed security issues, their
implementations are closed source and often lack a comprehensive
assessment. In response, we conducted a systematic study against
the popular Wi-Fi hotspot-based data clone services published by
the eight mainstream Android manufacturers. To the best of our
knowledge, we are the first to analyze this application scenario.

Our target is to examinewhether the analyzed data clone services
satisfy essential security goals such as confidentiality and integrity
checks for transferred data, and authentication of connected mo-
bile phones. In order to carry out our analyses, we build Poirot,
an analysis system to recover the undocumented workflows and
proprietary data transmission protocols. Poirot statically analyzes
executables of each data clone service and dynamically inspects its
behavior (including code execution and relevant network traffic).
The data clone services are analyzed in three perspectives: data
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Table 1: Estimated number of devices affected by vulnerabil-
ities in Wi-Fi hotspot-based data clone
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Table 1: Estimated number of devices affected by vulnerabil-
ities in Wi-Fi hotspot-based data clone

Data Clone Service Number of vulnerable devices

Huawei PhoneClone ≥ 100 million
OPPO BackupAndRestore ≥ 70 million
Vivo EasyShare ≥ 70 million
Xiaomi Backup ≥ 50 million
Gionee GdataGhost ≥ 15 million
OnePlus BackupRestore ≥ 4 million
Motorola Migrate ≥ 1 million

In the rest of this paper we refer to each data clone service by the name
of the company providing it (e.g., Huawei PhoneClone is referred to as
Huawei)

inefficient but also inconvenient. With respect to privacy, exporting
sensitive user data to either a cloud drive or a hard disk raises
concerns of data abuse or data leakage.

To ensure a secure and smooth data migration, many Android
phone manufacturers developed a new cross-device data migration
solution — Wi-Fi hotspot-based data clone. By establishing a
private and temporary Wi-Fi network connection between two
mobile phones, user data are transferred between these two phones
directly. This approach achieves a high data transmission speed
without requiring the transferred user data to be stored at a third-
party medium. More importantly, system privileges are granted to
these data clone services so that they are allowed to access sensitive
user data (e.g., app login credentials stored at app sandboxes). Hence,
a large number of manufacturers embed the data clone service as a
default service in their mobile phones. Table 1 lists the number of
devices produced by the well-known manufacturers that would be
affected by the vulnerabilities we have identified.

Nonetheless, designing a secure data clone service is challeng-
ing because developers are not security experts and they focus
more on the usability of the software [36] instead of its security
complied with the Android security model [24]. Although most
data clone services claim to have addressed security issues, their
implementations are closed source and often lack a comprehensive
assessment. In response, we conducted a systematic study against
the popular Wi-Fi hotspot-based data clone services published by
the eight mainstream Android manufacturers. To the best of our
knowledge, we are the first to analyze this application scenario.

Our target is to examinewhether the analyzed data clone services
satisfy essential security goals such as confidentiality and integrity
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Figure 1: Internal architecture of aWi-Fi hotspot based data
clone service

export and import, data transmission, and Wi-Fi configuration. The
results show that those data clone services contain many serious
design flaws that have never been reported. To protect end-users,
we have contacted the relevant manufacturers and reported the
identified flaws. We expect our study becomes a guide to revising
similar functions as well as developing new services securely.

To prove that those flaws can lead to actual attacks, we designed
two types of attacks. The attacks can either be launched remotely
through wireless communication or locally via a malicious app
on either the old phone or the new one. We found that seven out
of eight investigated services suffer from at least one attack, and
since those data clone services are implemented as pre-installed sys-
tem components, we could estimate the number of mobile phones
affected according to the sales data released by each manufacturer.

The rest of the paper is organized as follows. Section 2 introduces
relevant background on Wi-Fi hotspot-based data clone. Section 3
introduces our security analysis approach and describes Poirot. It
also describes in details the different features we analyze for each
data clone service. Section 4 reports the results of our analysis and
introduces the attacks we have designed to exploit some of the
flaws identified by our analysis. Finally Section 5 discusses related
works and Section 6 outlines a few conclusions.

2 WI-FI HOTSPOT-BASED DATA CLONE
The Wi-Fi hotspot-based data clone is a data migration proce-
dure between two Android mobile phones, in which a temporary,
private Wi-Fi network is built connecting the phones. In compari-
son to data clone solutions relying on a USB cable (e.g., Android’s
ADB backup and restore), this wireless data clone procedure is
convenient. Unlike a cloud-based data clone, which uses a remote
cloud server (e.g., Google Drive) as the intermediate data storage,
such a Wi-Fi hotspot-based data migration is fast – around 10MB/s
relying on a private Wi-Fi network between two involved phones,
and is not much affected by the Internet connection. In addition it
does not “consume” any mobile data.

Figure 1 shows the internal architecture of a Wi-Fi hotspot-
based data clone. A data clone service typically consists of a data
clone app and several supporting components implemented as
either system libraries or system processes. Specifically, a data clone
procedure between two phones consists of four steps:
1) Wi-Fi Setup: The private Wi-Fi hotspot is started by the data
clone app on the old mobile phone1. The app sets up the Wi-Fi
network and then encodes the Wi-Fi information (i.e., SSID and
password) into an QR code. The QR codemight include a connection
port, which is allocated either randomly or it is fixed. The new
mobile phone can join the WLAN by using the camera to scan the
QR code.
2) Data Export: According to the permissions granted to the data
clone app, the app on the old mobile phone lists all the exportable
data for users to select. The app then packs the selected data into
different files with customized transfer formats. Note that the large
size data, such as photos and videos, are compressed when their
size exceeds a certain limit.
3) Data Transmission: To transfer the packed files between two
mobile phones, most manufacturers customize the private applica-
tion protocols based on TCP. Others rely on some existing protocols
such as FTP and HTTP. During the actual transfer, files are usually
transferred throughmultiple threads. Data clone services adopt mul-
tiple strategies to protect the transferred data. First, the privately
built Wi-Fi network is protected by a security standard protocol
(e.g., WPA2 protocol) and excludes unauthorized devices. Second,
data clone services rely on a secure protocol (e.g., TLS) to avoid
potential attacks (e.g., eavesdropping) from third parties. Finally,
many data clone services deploy proprietary data encoding and
encryption schemes to further guarantee the confidentiality and
integrity of the transferred data.
4) Data Import: When all packed files are transferred to the new
mobile phone, its data clone app first unpacks the data and then
restores each to the specific directory. Obviously, permissions to
operate on these data are required.

In the following, we detail the four types of user data that can
be migrated.

2.1 Cloneable User Data
User data are stored at different places in the mobile phone, such
as SD cards and system databases. With respect to their purposes,

1In fact, the Wi-Fi hotspot can be set up by either the old mobile phone or the new
mobile phone.
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storage locations, and access permissions, we can classify the trans-
ferred user data into four categories: SD card data, communica-
tion records, system settings, and app related data.

2.1.1 SD card data. The Android system supports SD cards to
expand the storage of the phone. The specific user data (e.g., photos)
are stored in the partition of the SD card, i.e., /sdcard2. The SD
card data include: 1) Media Files, which are digital camera image
(DCIM) files and audio files that are created by apps such as camera,
video records, or music players; and 2) Downloaded Files, which
are the files downloaded via Internet and stored at the download
folder /sdcard/Downloads/. Typical formats of the downloaded files
include Microsoft office documents (.docx, .xlsx, etc.) and portable
documents (.pdf)3.

Data stored on the SD card are accessible by an app if it is au-
thorized with READ_EXTERNAL_STORAGE and WRITE_EXTERNAL_STORAGE

permissions, respectively. As these two permissions are classified
into the STORAGE permission groupwith a dangerous protection level,
the apps must prompt the users to grant the permissions at run-
time instead of directly requesting them at installation time. Such
dynamic prompt for those two permissions has been introduced in
Android starting from version 6.0.

2.1.2 Communication Records. Communication records represent
the information created during communication, mainly SMS mes-
sages, contacts, and call logs. The Android system stores these
records in SQLite databases and any app with the relevant per-
missions (e.g., SMS permission) granted is able to access them. No-
tice that SMS messages are stored in different “stores” in different
Android versions. They are stored in the system database4 from An-
droid 4.4 to Android 6.0. Since Android version 7.0, SMS messages
are stored in an encrypted database protected by a hardware-bound
key.

To access communication records, starting from Android version
6.0 an app needs runtime permissions classified as dangerous.

• SMS Messages: apps need the READ_SMS permission to read,
and only the default SMS app indicated by the user is allowed
to obtain the WRITE_SMS permission to insert or modify SMS
messages.

• Contacts: apps need runtime permissions READ_CONTACTS

and WRITE_CONTACTS in the CONTACTS permission group to re-
trieve contact records.

• Call Logs: apps require runtime permissions READ_CALL_LOG
and WRITE_CALL_LOG to read and write call logs, respectively.

2.1.3 System Settings. The function SettingsProvider is used by
the Android system to manage various system settings such as
HTTP_PROXY and BLUETOOTH_DISCOVERABILITY. System settings are
classified into three categories: System, Global, and Secure. The
Global (e.g., Bluetooth on and off) and Secure categories (e.g., Lo-
cation) contain app-read-only system preferences. To modify them,
the user must explicitly operate the system UI. For settings in the
System category, apps could request the WRITE_SETTINGS permission
2The partition of the SD card can be either a physical SD card or an emulated one
using part of the internal storage.
3A new data storage, scoped storage, has been introduced in Android version 10 or
higher. It makes easier to maintain the external storage and allows an app to access
the app-specific storage on the external storage.
4com.android.providers.telephony/databases/mmsms.db

(a dangerous protection level runtime permission) to read and write
them. In addition, some sensitive data, such as Wi-Fi passwords
and passcodes, are stored in private directories to which the special
SEAndroid types are assigned. For instance, the SSID and the pass-
word for Wi-Fi network connection in wifiConfigStore.xml are
wifi_data_file type objects, and thus a normal platform app can-
not access them. To directly operate on system settings, data clone
services often utilize a supporting process with the root privilege
to circumvent the restriction of Android systems.

2.1.4 App-related Data. While executing an app, app-related data
are generated and only accessible by the host app. There are two
main types of data: APK Files and App Data. APK files are the
installation packages of apps stored in the /data/app/ directory.
They are readable by any apps without requesting any permissions.
App data include app database, app settings, and all other user data,
which are isolated from the other apps via the app sandbox. App
data are only accessible by the host app stored in the private app
folder, i.e., /data/data/<packageName>.

Note that users can access the private folder through the ADB
tool [3] when its attribute android:allowBackup is set as True. How-
ever most apps nowadays disable this attribute.

3 SECURITY ANALYSIS
To protect user data against leakages, Android security policies [1]
are designed to restrict data export/import. Hence, manufacturers
need to modify the Android system by embedding customized
components to bypass policy restrictions on data export/import.
However, such modifications may introduce security threats.

In what follows, we discuss the attack models against customized
Wi-Fi hotspot-based data clone services, and then introduce our
security analysis system and our approaches to detect flaws in these
services.

3.1 Attack Model
In our attack model, the main target of the adversary is the trans-
ferred cloned data. A customized data clone service mainly intro-
duces two attack surfaces: 1) new sensitive data export/import
interfaces in the Android system; 2) a potentially unprotected wire-
less data transmission.

We assume that an attacker holds the same brand of Android
mobile phone and thus he can reverse engineer the data clone app to
retrieve the required information. Then we consider the following
types of attack:
A1: On-device Data Extraction. In this attack, given two mobile
phones, we assume that the attacker has managed to install a mali-
cious app on one of the two mobile phones before the data clone
procedure. Although the malicious app is isolated by Android secu-
rity policies, it can access the sensitive data without breaking the
security model of the Android system due to the insecure implemen-
tation of the data clone service. When the user starts to execute the
data clone service, the malicious app can detect such an execution
and exploit the data clone service to obtain the transferred sensitive
user data.
A2: Network-level Eavesdropping and Tampering. In this at-
tack, we assume that the attacker does not install any malicious app
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Figure 2: A high-level overview of our analysis workflow

on any of the mobile phones. Thus, instead of monitoring execu-
tions of the mobile phones, the attacker continuously monitors the
network to identify and exploit the insecure Wi-Fi network estab-
lished for the data clone service. Then during the execution of the
data clone operation, the attacker could launch man-in-the-middle
attacks to eavesdrop and tamper the transferred data.

3.2 Approach Overview
Most implementations of the customized Wi-Fi hotspot-based data
clone services are neither documented nor open-source. To fully
understand a data clone service and assess whether the modified
Android system violates the Android security policies, we execute
the workflow shown in Figure 2 to analyze the entire procedure of
a data clone service from various aspects. We first build Poirot, an
analysis system with three components: a static code analysis, a
dynamic instrumentation, and a network inspection. Relying
on Poirot, we check whether the data clone service is implemented
properly by analyzing: 1) data export/import; 2) data transmis-
sion; and 3)Wi-Fi configuration. Details about Poirot and the
analysis approach are introduced below.

3.3 Poirot Analysis System
The design of a system for properly analyzing the security data
cloning services requires addressing the following challenges:
1) How to understand the complicated functionalities pro-
vided by a data clone service? The Wi-Fi hotspot-based data
clone service aims at transferring various types of user data. Thus,
a number of privileges are required and a wide variety of system
functions and components are invoked to grant these privileges.
Hence, locating all the involved system functions and components
in ARM binary code and Dalvik bytecode is a challenge.
2)How to conduct an effective dynamic analysis onnewmod-
els of Android phones? A typical dynamic analysis needs a high
privilege to debug the involved executables, to hook critical system
APIs and to extract sensitive data such as app data and network
traffic. However, most of the new models of Android phones do not
allow users to obtain the root privilege, and thus hinder dynamic
analysis.
3)How to analyze the data transmission protocol? Proprietary
protocols are adopted for data transmission and thus transferred

data are packed in customized formats. It is difficult to design a
technique to determine whether these protocols are secure.

In response to these challenges, we design and implement Poirot
which consists of three components: 1) a static code analysis to
identify and analyze the executables that are relevant to the data
clone service; 2) a dynamic instrumentation to conduct a runtime
information analysis during the execution of the data clone proce-
dure; 3) a network inspection to monitor the transferred data and
support active network traffic inspection.

3.3.1 Static Code Analysis. As data clone services are implemented
by data clone apps, Poirot analyzes the data clone apps to under-
stand how each data clone service is implemented. It searches and
locates bytecode and binary executables that are correlated to the
data clone service (solution of challenge 1). To differentiate the data
clone apps developed by mobile phone manufacturers and third
parties, we refer to the data clone apps that are pre-installed as
platform apps.
Bytecode Analysis. The bytecode analysis aims at parsing the
platform app and checking the relevant functions in the Android
system framework; thus Poirot first extracts the APK file of the
platform app. According to the app name (i.e., the name displayed
on the mobile phone), Poirot obtains all APK files from the mobile
phone and executes aapt to parse the APK files to identify the one
that contains the app name. The APK file is regarded as the APK
of the data clone app. Then it collects DEX files in the APK file,
i.e., ODEX files in the platform app directory, manufacturer-specific
VDEX files (e.g., boot-framework.vdex and wifi-service.vdex), and
framework resource files (e.g. framework.apk). Next Poirot com-
bines all those files and disassembles them using APKTool. With
the generated bytecode, it then leverages JEB [7] to decompile it to
high-level source code. Data and control dependencies can be re-
trieved for further analysis (see Section 3.4). Note that Poirot uses
an existing callback control flow analysis approach [35] to deal with
multi-thread programming and inter-component communication.
Native Code Analysis.Many customized components of platform
apps are implemented as native code executables, and thus Poirot
conducts native code reverse engineering. It first analyzes the plat-
form app and searches for specific APIs (e.g., exec) and inter-process
communications (e.g., local socket); then it collects the involved
executables under the system folder (i.e., /system/bin/). Finally,
Poirot reverses the binary code by using IDA and IDAPython. We
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then manually analyze these system services to understand how
a data clone app accesses and backs up/restores system data (e.g.,
data in system folders) through a native executable.

3.3.2 Dynamic Instrumentation. With the help of the Frida dynamic
code instrumentation framework, Poirot provides an instrumented
system to execute the data clone operation. By rooting an Android
mobile phone (e.g., unlocking the bootloader and flashing a cus-
tomized kernel image), Poirot instruments sensitive APIs in the
identified executables (e.g., data clone apps, system libraries). While
executing the data clone procedure, Poirot collects information
including the accessed user data, the invoked system APIs (espe-
cially those related to network I/O and cryptography) and the used
parameters, as well as the involved permissions (app permissions
and SEAndroid types).

Since some models of Android mobile phones cannot be rooted,
we install the universal version of the data clone app5 on a rooted
mobile phone (solution of challenge 2). Although the universal data
clone app is not granted signature permissions to access the spe-
cific sensitive data, user data (e.g., contacts information) that are
protected by dangerous and normal permissions are still accessi-
ble. Poirot can obtain adequate information for further analysis
because the data transmission protocol for data transfer is the same.

3.3.3 Network Inspection. Through the network inspection compo-
nent, Poirot monitors network traffic between two Android mobile
phones relying on the tcpdump data-network packet analyzer [2].
For the mobile phones that cannot be rooted, the universal versions
of the data clone apps are installed on the other rooted mobile
phones for data transmission. If the universal version is not pro-
vided, we run the data clone apps on two unrooted Android phones
to execute the data clone procedure and then leverage Poirot
to intercept network packets by launching an address resolution
protocol (ARP) spoofing (solution of challenge 3). The captured
network packets are analyzed and modified by a laptop through
the man-in-the-middle attack.

To reduce noise, Poirot drops ARP, DNS, and ICMP packets
from the captured network traffics because data transmission over
the private Wi-Fi LAN does not need these protocols. For data
transmission that use common protocols, such as HTTP, FTP, and
WebSocket, Poirot parses the packets with the help of Wireshark [9].
Otherwise, Poirot simply records the raw transferred data for
further analysis.

Note that Poirot also supports network traffic differential analy-
sis because we can select the data type before transferring the data.
Thus, the packet format for transferring different types of data can
be determined.

3.4 Analysis Process
Relying on the above three components, we use Poirot to conduct
the following analyses to examine data clone services.

3.4.1 Data Export/Import Analysis. We investigate whether a data
clone service (unintentionally) exposes the operated user data to
a third-party app. Given a data clone app, Poirot first queries the
5Apart from the platform apps, the manufacturers usually develop the universal
versions of the data clone apps that can be installed on the phones published by the
other manufacturers.

requestedPermissionsFlags array in the class PackageInfo class to
obtain a complete list of its used permissions directly. Apart from
the listed permissions, Poirot dynamically monitors the data clone
procedure because some permissions are granted dynamically in
the new versions of Android systems. To retrieve a completed per-
mission list, Poirot monitors file I/O operations, API invocations,
involved system services (e.g., BackupManagerService).

To ensure the effectiveness of data transmission, the transferred
user data are temporarily stored at the flash storage as intermediate
data. Besides, most data clone services adopt an asynchronousmech-
anism, which uses different threads to handle data transmission and
data export/import, respectively. Therefore, Poirot monitors file
I/O operations to identify where the intermediate data are stored
and checks whether these intermediate data are properly cleaned
after transmission.

For the system services, Poirot determines the external system
services that are invoked by the data clone app and then identifies
the required permissions for these services. As user data are oper-
ated on during the data clone procedure, Poirot determines the
services that are requested and checks which system privilege is in-
voked for the data operation. For instance, a data clone app utilizes
the PackageManager service to restore user data and then leverages
the adb backup functionality to move user data into the sandbox.
Accordingly, Poirot first identifies the service that is invoked to
restore and move user data. It then learns the permissions required
to operate on the user data.

After having identified the permissions used by the data clone
service, Poirot analyzes whether the user data are protected prop-
erly. First, it examines the dangerous permissions and identifies the
unintentionally exposed components by executing Drozer [4] [22].
We manually analyze the functionalities defined in the components
and determine whether the components are vulnerable. Third-party
apps can access sensitive data illegally after exploiting these ex-
posed components. As manufacturers embed customized system
components into the standard Android system to support user data
import and export, Poirot then checks the embedded system com-
ponents to verify whether a third-party app will execute them.

3.4.2 Data Transmission Analysis. Poirot further checks the con-
fidentiality and integrity of the transferred data. It analyzes data
transmission from three perspectives: application-level transmis-
sion protocols, transmission formats, sender/receiver identity and
data integrity checks. Although Poirot can analyze data transmis-
sion between two Android mobile phones by reverse engineering
data clone apps (static analysis), the information obtained from the
network-related code snippet is incomplete. Hence Poirot uses a
hybrid methodology.

First, Poirot relies on the network inspection component to
capture network traffics while data are being migrated. Two steps
are followed to analyze the network traffics:

(1) Poirot leverages Wireshark [9] to parse network traffic and
identify whether any known protocol (e.g., HTTP, FTP) is
used.

(2) If a proprietary protocol is used, we manually execute the
data clone procedure by transferring each data type in two
comparable groups. Then Poirot intercepts the transmitted
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network packets and conducts a differential analysis to dis-
tinguish data payload and meta data payload for further
inspections. Consider an example of transferring media files.
We first transfer data in group A (with photos only) and
intercept the network traffic. Then we send data in group
B (with audio audio files and photos) and intercept the cor-
responding network traffics. Finally, Poirot identifies the
differences between the network traffic of these two groups.
By analyzing the network traffic generated by group A only,
we pinpoint the data payload in the proprietary protocol.

Second, Poirot uses a heuristics to statically analyze the data
clone app. Since the I/O operations are involved during the data
clone procedure, Poirot identifies the I/O related network functions
such as getOutputStream and write(). When third-party network
application frameworks (e.g., Netty [8], Apache MINA [5]) are used,
Poirot locates the critical encoding APIs that will be applied before
network I/O (e.g., encode() in Apache MINA). Besides, protection op-
erations for user data, such as data encryption, might also be used
before data transfer. Therefore, Poirot identifies the typical crypto-
graphic APIs (e.g., Cipher.getInstance(), BigInteger.modPow, and
MessageDigest.getInstance) and infers whether checksum algo-
rithms are implemented.

Finally, Poirot verifies whether user data are transferred prop-
erly by conducting an active penetration test. Given the data pay-
load, it executes format identification to check data confidential-
ity. If the format of the data payload is text-based (e.g., HTTP-
plaintext/base64, json), Poirot directly extracts its contents. If the
data format is binary, Poirot leverages binwalk [6] to extract the
potential contents (e.g., a JPEG file). Once meaningful contents are
recognized, Poirot reports a violation against data confidentiality
in the data clone service. In addition, Poirot tampers either the
data payload (as well as the attached checksum) or the meta data to
check whether the data clone app on the receiver side verifies the
user data. If a data payload (e.g., an APK file) can be replaced or a
checksum can be forged, Poirot further reports a violation against
data integrity in the data clone service.

3.4.3 Wi-Fi Configuration Analysis. For the Wi-Fi hotspot-based
data clone service, the protection strategies (e.g., authentication)
of the WLAN are essential. Poirot analyzes the WLAN protection
strategies from two aspects: generation rules of SSID/password and
connection restriction.
Generation rules of SSID/password. Poirot executes the static
code analysis component to locate the code snippets that are rele-
vant to the Wi-Fi hotspot setup and recover the generation rules
of the SSID/password declared in each app. To set up the Wi-Fi
hotspot, the wifiConfiguration API needs to be invoked. Hence,
Poirot locates the code snippet with wifiConfiguration and then
retrieves the value assigned to the variables SSID and preSharedKey6.

For Android version 7.0 and below, the setWifiApEnabled API
in WifiManager class is invoked to start the Wi-Fi hotspot. Poirot
pinpoints setWifiApEnabled to recognize where variables SSID and

6Note that since Android version 10, Google has suggested to use
WifiNetworkSpecifier.Builder to create NetworkSpecifier and
WifiNetworkSuggestion.Builder to create WifiNetworkSuggestion.
However in our study most Android phones still use Android version 9.0 and below,
and thus in this paper we focus on the WifiConfiguration class.

preSharedKey are declared and their assigned values. Starting from
the values of SSID and preSharedKey, Poirot performs backward
program slicing to track the statements that are (directly/indirectly)
data dependent on the values of SSID and preSharedKey. The cor-
related statements are regarded as the generation rule to generate
SSIDs/passwords. Within those correlated statements, Poirot iden-
tifies whether there is any fixed string that is used to generate either
SSID or password. If so, Poirot labels such a generation rule as
insecure.

It is important to mention that from Android version 7.1 to
version 9.0, the startTethering API in ConnectivityManager class
should also be used together with the setWifiApEnabledAPI. Hence,
Poirot locates startTethering when analyzing these Android ver-
sions.
Connection restriction. We argue that for security only two An-
droid phones are allowed to join the WLAN because the data clone
process is a peer-to-peer data migration. Any other WLAN connec-
tion requests should be declined even if the correct Wi-Fi password
is provided. To test this, we manually execute a data clone app to
set up the Wi-Fi hotspot and use another data clone app to join
the private network. Then, we use one or more Android phones
to join the network. If these Android phones can join the network
successfully, we define the setting of data transmission as highly
risky.

4 EVALUATION
In this section, we report our analysis results against eight cus-
tomized data clone services developed by different Android phone
manufacturers. We first obtained implementation details of those
data clone services with the help of Poirot and then identified
related attacks against insecurely implemented services. We also
check the new versions of the data clone services to identifywhether
the vulnerabilities still exist.

4.1 Experimental Targets
We investigated the popular Android phones and discovered eight
customized data clone services supported by well-known manufac-
turers, including Gionee, Huawei, Nokia,Motorola, OnePlus, Oppo, Vivo,
and Xiaomi. All phones are off-the-shelf products released during
2015-2019. Details about the tested phones are given in Table 2.

The Android systems installed on these Android phones are
from version 5.0 to the latest mainstream version 9.0 (by 2019). The
corresponding platform app developed by each manufacturer for
implementing the data clone service is also listed. It is worthy noting
that the mobile phones by Gionee are security-enhanced Android
phones with an EAL4+ certificate (No. ISCCC-2016-VP-304).

In our experiments, five data clone services (i.e., Huawei,Motorola,
Nokia, OnePlus, and Xiaomi) are analyzed by using at least one rooted
phone. For the other three data clone services (Gionee, OPPO, and
Vivo), we extracted the universal versions of the data clone apps
and installed them on the rooted Motorola (Android 5.0), Huawei
(Android 7.0), and Xiaomi phone (Android 8.0) for analysis.

To conduct the security analysis for testing each data clone
service, we prepared two Android mobile phones developed by
each manufacturer, phone A (𝑝𝐴) and phone B (𝑝𝐵 ) with the built-
in data clone services, to simulate the phone-to-phone data clone
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procedure. Before the test, we also stored user data in 𝑝𝐴 including
contacts, SMS messages, installed apps, etc., and executed a factory
reset for 𝑝𝐵 . Then we ran the data clone apps on 𝑝𝐴 and 𝑝𝐵 to
transfer data.

Table 2: Analyzed data clone services and their related An-
droid devices
Table 2: Analyzed data clone services and their related An-
droid devices

Device Clone App Phone A Phone B System

Gionee Ami GdataGhost GN8002S GN8003 Android 6.0
Huawei PhoneClone P9* Mate8 Android 7.0
Motorola Migrate XT1079* XT1085* Android 5.0
Nokia PhoneCloner X5* X5* Android 9.0
OnePlus BackupRestore 5T* 5* Android 9.0
OPPO BackupAndRestore A37m R9 Plusm A Android 5.1
Vivo EasyShare U1 U1 Android 8.1
Xiaomi Backup MI5 MI6* Android 8.0

*: the phone is rooted

SD card, app-related data, and system settings). Next, we utilized
Poirot to assess the security risks these services may suffer from.
The analysis results are discussed in what follows.

Table 3: Supported data types for each data clone service

Service On-device Attack Network-level Attack

Gionee vulnerable vulnerable
Huawei - partially vulnerable
Motorola vulnerable -
Nokia - -
OnePlus vulnerable vulnerable
OPPO vulnerable -
Vivo - vulnerable
Xiaomi vulnerable vulnerable

1

4.2.1 Data Export & Import. We inspected all data clone services
supporting data export/import. When the data clone app is granted
with normal and dangerous permissions, communication records,
SD card data, and APK files can be operated on. Since all the data
clone apps are installed as platform apps on their own brands
of Android phones, signature permissions are granted, and thus
system settings and install apps are accessible without requiring
the access to be granted by the users. Note that the data clone
services of Motorola and Nokia are not allowed to operate on app
data and system settings, even though they possess the signature

level permissions. In addition, we found that six manufacturers
implemented supporting system components to help data clone
services access the protected data (e.g., WLAN history and app
data). Among them, Xiaomi and Vivo modified the original Android
BackupManagerService to ignore the android:allowBackup="false"

flag and thus their data clone apps can backup private data of ALL
the installed apps. The customized processes with root privilege
were introduced by Huawei7, OnePlus8 and Oppo9, whereas Gionee
integrated a built-in superuser executable to grant root privilege to
its data clone service. For these services requiring sensitive permis-
sions, Poirot did not detect explicitly exposed components, which
indicates that a third-party app could not utilize interfaces of these
services directly.
7/system/bin/filebackup
8/system/bin/br_app_data_service
9/system/bin/br_app_data_service

The code analysis and the network traffic analysis demonstrated
that all eight data clone services transfer data separately. That is,
data are first packed into files of different formats and then each
file is sent individually. By utilizing the dynamic instrumentation
of Poirot, we found that three data clone services (that is, Huawei,
Motorola, and Vivo) store intermediate files at the app sandbox, while
the other five data clone services (that is, Gionee, Nokia, OnePlus,
OPPO, and Xiaomi) use the SD card as buffer for intermediate data.
This leads to a temporary file retrieving attack (see details in Sec-
tion 4.3).

4.2.2 Data Transmission. We found that there are significant dif-
ferences between data transmission protocols adopted by each data
clone service (see the last two columns of Table 4). The data clone
services of Gionee, Nokia, OnePlus, OPPO, and Xiaomi adopt their
proprietary, TCP based protocols. The data clone services of Huawei,
Motorola, and Vivo use multiple protocols to transfer different types
of data. The Huawei data clone service uses the File Transfer Proto-
col (FTP) to transfer user data, a customized UDP-based heartbeat
protocol to keep a long-lived connection, and a proprietary TCP-
based protocol to send control commands. The Motorola data clone
service utilizes the standard HTTP protocol to transfer communica-
tion records and a TCP-based proprietary protocol to transfer files
stored on the SD card. The Vivo data clone service utilizes the HTTP
protocol to transfer user data while an additional WebSocket-based
heartbeat protocol is used to maintain the connection.

With the help of Poirot, we successfully located the code snip-
pets related to data packing and data sending/receiving in all eight
data clone apps. We then conducted a manual reverse engineering
to recover the formats of transferred data. For the data clone ser-
vices of Nokia and Gionee, the transferred data are serialized using
writeObject. The Nokia data clone service separates communication
sessions into metadata sessions and raw content sessions, while the
Gionee data clone service combines the metadata and the content
of transferred data in the same session. The data clone services
of OnePlus and OPPO share a similar solution that transfers user
data without compressing them. The difference is that the OPPO
data clone service uses only one session to send all data while the
OnePlus data clone service establishes several sessions to transfer
data payload and other metadata, respectively. The data clone ser-
vice of Xiaomi transfers user data in both the text-format and the
binary-format. The text-format user data contain JSON-serialized
control commands and file metadata, and the binary-format files
contain the raw content of the transferred data. The data clone
services of Motorola transfers data (SD card files with TCP, commu-
nication records with HTTP) without any packing. The Vivo data
clone service adopts a data transmission with HTTP to transfer
different data files separately, and part of the data are packed (me-
dia data are compressed as a .zip file, and app data are packed as
files with Android Backup format). The Huawei data clone service
packs most user-generated data (communication records, app data,
system settings) into SQLite3 (.db) files, but it sends APK files and
media files directly or archives them as a .tar file.

In short, we found that exported data and metadata (i.e., file
paths, file sizes, and checksums) are encoded into different files
with customized packing format. But NONE OF THEM encrypts
these files. All eight services only rely on the protection of the
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4.2 Analysis Results
Having the details about the Android phones, we first analyzed
the data types that can be transferred. The transferred data types
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all types of sensitive data (i.e., communication records, files on
SD card, app-related data, and system settings). Next, we utilized
Poirot to assess the security risks these services may suffer from.
The analysis results are discussed in what follows.

Table 3: Supported data types for each data clone service

Service On-device Attack Network-level Attack

Gionee vulnerable vulnerable
Huawei - partially vulnerable
Motorola vulnerable -
Nokia - -
OnePlus vulnerable vulnerable
OPPO vulnerable -
Vivo - vulnerable
Xiaomi vulnerable vulnerable

1

4.2.1 Data Export & Import. We inspected all data clone services
supporting data export/import. When the data clone app is granted
with normal and dangerous permissions, communication records,
SD card data, and APK files can be operated on. Since all the data
clone apps are installed as platform apps on their own brands
of Android phones, signature permissions are granted, and thus
system settings and install apps are accessible without requiring
the access to be granted by the users. Note that the data clone
services of Motorola and Nokia are not allowed to operate on app
data and system settings, even though they possess the signature

level permissions. In addition, we found that six manufacturers
implemented supporting system components to help data clone
services access the protected data (e.g., WLAN history and app

data). Among them, Xiaomi and Vivo modified the original Android
BackupManagerService to ignore the android:allowBackup="false"

flag and thus their data clone apps can backup private data of ALL
the installed apps. The customized processes with root privilege
were introduced by Huawei7, OnePlus8 and Oppo9, whereas Gionee
integrated a built-in superuser executable to grant root privilege to
its data clone service. For these services requiring sensitive permis-
sions, Poirot did not detect explicitly exposed components, which
indicates that a third-party app could not utilize interfaces of these
services directly.

The code analysis and the network traffic analysis demonstrated
that all eight data clone services transfer data separately. That is,
data are first packed into files of different formats and then each
file is sent individually. By utilizing the dynamic instrumentation
of Poirot, we found that three data clone services (that is, Huawei,
Motorola, and Vivo) store intermediate files at the app sandbox, while
the other five data clone services (that is, Gionee, Nokia, OnePlus,
OPPO, and Xiaomi) use the SD card as buffer for intermediate data.
This leads to a temporary file retrieving attack (see details in Sec-
tion 4.3).

4.2.2 Data Transmission. We found that there are significant dif-
ferences between data transmission protocols adopted by each data
clone service (see the last two columns of Table 4). The data clone
services of Gionee, Nokia, OnePlus, OPPO, and Xiaomi adopt their
proprietary, TCP based protocols. The data clone services of Huawei,
Motorola, and Vivo use multiple protocols to transfer different types
of data. The Huawei data clone service uses the File Transfer Proto-
col (FTP) to transfer user data, a customized UDP-based heartbeat
protocol to keep a long-lived connection, and a proprietary TCP-
based protocol to send control commands. The Motorola data clone
service utilizes the standard HTTP protocol to transfer communica-
tion records and a TCP-based proprietary protocol to transfer files
stored on the SD card. The Vivo data clone service utilizes the HTTP
protocol to transfer user data while an additional WebSocket-based
heartbeat protocol is used to maintain the connection.

With the help of Poirot, we successfully located the code snip-
pets related to data packing and data sending/receiving in all eight
data clone apps. We then conducted a manual reverse engineering
to recover the formats of transferred data. For the data clone ser-
vices of Nokia and Gionee, the transferred data are serialized using
writeObject. The Nokia data clone service separates communication
sessions into metadata sessions and raw content sessions, while the
Gionee data clone service combines the metadata and the content
of transferred data in the same session. The data clone services
of OnePlus and OPPO share a similar solution that transfers user
data without compressing them. The difference is that the OPPO
data clone service uses only one session to send all data while the
OnePlus data clone service establishes several sessions to transfer
data payload and other metadata, respectively. The data clone ser-
vice of Xiaomi transfers user data in both the text-format and the
binary-format. The text-format user data contain JSON-serialized
control commands and file metadata, and the binary-format files
contain the raw content of the transferred data. The data clone

7/system/bin/filebackup
8/system/bin/br_app_data_service
9/system/bin/br_app_data_service
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Table 4: Wi-Fi and protocol features of data clone services (Strings in red are constant SSIDs)Table 4: Wi-Fi and protocol features of data clone services (Strings in red are constant SSIDs)

Service Hotspot
AP

SSID Passwd Protocol Server PortFixed Pattern Fixed Pattern

Gionee sender ✓ AmiClone_DN ✓ "Lss19900716" TCP 5024
Huawei receiver ✗ DN%nn%CloudClone ✗ nnnnnnnn FTP/TCP/UDP -
Motorola receiver ✗ DIRECT-pp-DN_iiiia ✗ ppppppp TCP/HTTP 6000
Nokia receiver ✗ AndroidShare_nnnn ✗ RandomUUID TCP 8988

OnePlus receiver ✗ DN_co_apllll ✗ llllnnnn TCP 8940
OPPO receiver ✗ DN_co_apllll ✓ iiiiiiii TCP 8939
Vivo sender ✓ Vivo#DN#ii - - HTTP/WebSocket 10178

Xiaomi receiver ✓ 𝑠𝑡𝑟 b DN ✓ SSID-related TCP 57383-57386

DN: device name or device model; n: a random number; p: a random printable character such as number or letter; l: a
random lower case letter; i: a fixed character once generated at first time.
a an example is “DIRECT-2k-XT1085_8e6e” in which “DIRECT” is a fixed string, “XT1085” is device model, “2k” is a
random string that changes for each time of execution and “8e6e” is a fixed string.
b str is a device-specific, base64-encoded string, which is constant for a certain smartphone.

established private Wi-Fi network, and thus fail to guarantee data
confidentiality during their data clone process. In addition, we
checked how each service validates the integrity of transferred
data. Surprisingly, none of those data clone services executes a
robust data integrity validation: they either miss the data integrity
check or incorrectly implement it. Only Huawei and Xiaomi employ
data checksum validations (HMAC-SHA256 and CRC-32, respec-
tively) in their protocols, while the other services do not use any
checksum for integrity validation. And even though the Xiaomi ser-
vice attaches a CRC checksum to each transferred file, for some
unknown reasons the data clone app just ignores the check. Thus,
even if the transferred data does not match its CRC checksum, the
data clone app on 𝑝𝐵 still accepts it.

4.2.3 Wi-Fi Configuration. Our experiments inspected the follow-
ing three aspects of the established Wi-Fi network:
SSID randomness: By reverse engineering the data clone platform
apps, we found that most apps generate an SSID in a certain for-
mat. This SSID can be used as a fingerprint of its corresponding
data clone service. The SSID generation rules are shown in Table 4.
Among them, the services of Gionee, Vivo, and Xiaomi always gen-
erate constant SSIDs on the same device. The SSIDs generated by
other services follow certain rules; thus one can learn the patterns
of those services in advance and continuously scan the Wi-Fi sig-
nals to wait for a matched SSID. When an expected SSID is scanned,
it indicates that a data clone process is starting. Subsequently, the at-
tacker can try to circumvent the password authentication (see next
paragraph) and join the network and intercept messages exchanged
by the two vulnerable devices.
Password strength: We found that many data clone services do
not randomly generate Wi-Fi passwords. Instead, they adopt inse-
cure password generation rules. Table 4 lists the recovered Wi-Fi
password generation rules. In detail, only the data clone service of
Nokia implements a secure password generation (that is, it uses the
default configuration provided by the Android system ). For other
data clone services, we found the following flaws:

a) Predictable Passwords: The data clone service of Xiaomi gener-
ates the password by hashing the SSID and fetching the first four
bytes in hex format (e.g., “A1B2C3D4”). Any attacker could directly

calculate the password since both the SSID and the hash algorithm
are publicly known. The password used by the Gionee data clone
service is a hard-coded constant string in its platform app. The
Wi-Fi network established by Vivo data clone service is an open
WLAN without any password protection. The passwords created
by OnePlus and Huawei data clone services suffer from several issues.
First, both services provide partially-random passwords. Only four
digits (104 candidates) are random in the OnePlus data clone service,
while eight digits (108 candidates) are random in the Huawei data
clone service. A brute-force attack against the Wi-Fi network hand-
shake packet can allow the attacker to obtain the password within
at most 50 seconds, using a state-of-the-art GPU such as RTX 2080
Ti. Second, theOnePlus data clone service uses the system time as
the random seed, which has inadequate information entropy and is
easily to be guessed.

b) Passwords Leakage: We found that although the passwords
generated by the Oppo and Motorola data clone services are random
and unpredictable. the Android systems of the tested devices (ver-
sion below 8.0) provide a reflection mechanism to invoke the system
API getWiFiApConfiguration that allows any apps to query the SSID
and the password of the established Wi-Fi network. A third-party
app on the same device thus can easily obtain the password of the
private WLAN [23].
Connection restriction:We argue that the private Wi-Fi network
used in a data clone service should strictly validate the connected
devices. Unfortunately, we found that all the Wi-Fi networks except
for the one established by Huawei do not restrict the number of
connected devices. In addition, none of the eight data clone ser-
vices employ a phone-to-phone authentication and thus any mobile
phone with the password could join the WLAN. This could lead to
a sandbox data extraction attack (see Section 4.3).

4.3 Attacks
To demonstrate how these insecure implementations threat user
data privacy, we designed two types of attack: a on-device attack
and a network-level attack. We first defined seven essential require-
ments that a secure Wi-Fi hotspot based data clone service should
satisfy. Table 5 lists for each considered data clone service the re-
quirements satisfied by the data clone service. As shown in the
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services of Motorola transfers data (SD card files with TCP, commu-
nication records with HTTP) without any packing. The Vivo data
clone service adopts a data transmission with HTTP to transfer
different data files separately, and part of the data are packed (me-
dia data are compressed as a .zip file, and app data are packed as
files with Android Backup format). The Huawei data clone service
packs most user-generated data (communication records, app data,
system settings) into SQLite3 (.db) files, but it sends APK files and
media files directly or archives them as a .tar file.

In short, we found that exported data and metadata (i.e., file
paths, file sizes, and checksums) are encoded into different files
with customized packing format. But NONE OF THEM encrypts
these files. All eight services only rely on the protection of the
established private Wi-Fi network, and thus fail to guarantee data
confidentiality during their data clone process. In addition, we
checked how each service validates the integrity of transferred
data. Surprisingly, none of those data clone services executes a
robust data integrity validation: they either miss the data integrity
check or incorrectly implement it. Only Huawei and Xiaomi employ
data checksum validations (HMAC-SHA256 and CRC-32, respec-
tively) in their protocols, while the other services do not use any
checksum for integrity validation. And even though the Xiaomi ser-
vice attaches a CRC checksum to each transferred file, for some
unknown reasons the data clone app just ignores the check. Thus,
even if the transferred data does not match its CRC checksum, the
data clone app on 𝑝𝐵 still accepts it.

4.2.3 Wi-Fi Configuration. Our experiments inspected the follow-
ing three aspects of the established Wi-Fi network:
SSID randomness: By reverse engineering the data clone platform
apps, we found that most apps generate an SSID in a certain for-
mat. This SSID can be used as a fingerprint of its corresponding
data clone service. The SSID generation rules are shown in Table 4.
Among them, the services of Gionee, Vivo, and Xiaomi always gen-
erate constant SSIDs on the same device. The SSIDs generated by
other services follow certain rules; thus one can learn the patterns
of those services in advance and continuously scan the Wi-Fi sig-
nals to wait for a matched SSID. When an expected SSID is scanned,

it indicates that a data clone process is starting. Subsequently, the at-
tacker can try to circumvent the password authentication (see next
paragraph) and join the network and intercept messages exchanged
by the two vulnerable devices.
Password strength: We found that many data clone services do
not randomly generate Wi-Fi passwords. Instead, they adopt inse-
cure password generation rules. Table 4 lists the recovered Wi-Fi
password generation rules. In detail, only the data clone service of
Nokia implements a secure password generation (that is, it uses the
default configuration provided by the Android system ). For other
data clone services, we found the following flaws:

a) Predictable Passwords: The data clone service of Xiaomi gener-
ates the password by hashing the SSID and fetching the first four
bytes in hex format (e.g., “A1B2C3D4”). Any attacker could directly
calculate the password since both the SSID and the hash algorithm
are publicly known. The password used by the Gionee data clone
service is a hard-coded constant string in its platform app. The
Wi-Fi network established by Vivo data clone service is an open
WLAN without any password protection. The passwords created
by OnePlus and Huawei data clone services suffer from several issues.
First, both services provide partially-random passwords. Only four
digits (104 candidates) are random in the OnePlus data clone service,
while eight digits (108 candidates) are random in the Huawei data
clone service. A brute-force attack against the Wi-Fi network hand-
shake packet can allow the attacker to obtain the password within
at most 50 seconds, using a state-of-the-art GPU such as RTX 2080
Ti. Second, theOnePlus data clone service uses the system time as
the random seed, which has inadequate information entropy and is
easily to be guessed.

b) Passwords Leakage: We found that although the passwords
generated by the Oppo and Motorola data clone services are random
and unpredictable. the Android systems of the tested devices (ver-
sion below 8.0) provide a reflection mechanism to invoke the system
API getWiFiApConfiguration that allows any apps to query the SSID
and the password of the established Wi-Fi network. A third-party
app on the same device thus can easily obtain the password of the
private WLAN [23].
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Table 5: Security overview of the analyzed data clone servicesTable 5: Security overview of the analyzed data clone services

Service Unpredicatable
SSID

Secure Wi-Fi
Password

Connection
Restriction

Protected
Temporary Data

Encrypted
Transmission

Integrity
Check

Device-to-device
Authentication

Gionee ✗ ✗ ✗ ✗ ✗ ✗ ✗

Huawei ✗ ✗ ✓ ✓ ✗ ✓ ✗

Motorola ✗ / ✗ ✓ ✗ ✗ ✗

Nokia ✓ ✓ ✗ ✗ ✗ ✗ ✗

OnePlus ✗ ✗ ✗ ✗ ✗ ✗ ✗

OPPO ✗ / ✗ ✗ ✗ ✗ ✗

Vivo ✗ ✗ ✗ ✓ ✗ ✗ ✗

Xiaomi ✗ ✗ ✗ ✗ ✗ / ✗

symbol / denotes that under certain circumstances (e.g., a malicious app is installed) the requirement may be violated.

table, none of the analyzed services satisfies all requirements, and
some of them do not even satisfy one of those requirements. We
also report in Table 6 whether each data clone service is vulnerable
to our proposed attacks, and detail how data clone services are
threatened by these attacks.

4.3.1 On-device Attack. An on-device attack is launched by a mali-
cious app installed on either the old Android phone or the new one.
The only requirement for this attack is that the malicious app has
a permission belonging to the STORAGE permission group to read
the files on the SD card. The security issue here is that data clone
services do not protect the intermediate files generated and stored
on the SD card. Even though the intermediate files are deleted right
after transmission, data packing is in general much faster than data
transmission and thus there exists a relatively long time window
for a malicious app to copy files from this directory.

As Table 5 shows, we found that five data clone services (i.e., One-
Plus10, Xiaomi11, OPPO12, Gionee13, Nokia14 ) are vulnerable to this
attack. We have developed a proof-of-concept (PoC) malicious app
to conduct this attack (installed on either 𝑝𝐴 or 𝑝𝐵 ). The app keeps
monitoring the data buffer directories to check whether a tempo-
rary file is written. If such a file is written, the app immediately
copies it to a new place on the SD card to store the data permanently.
We found that after a complete data clone procedure, our PoC app
collected all temporary files, and then extracted sensitive user data
from those files.

We argue that this attack is particularly applicable to a digital
forensic scenario, in that a forensic analyst can force one Android
phone to export its personal data by using another phone with
our PoC app as the receiver. This is a typical security risk when
the user data (especially the app-related data) are assumed to be
forensic-resistant (i.e., even though a forensic analyst knows the
unlock password, he cannot retrieve the data in the sandbox).

4.3.2 Network-level Attack. In this attack, the attacker monitors
the privately built Wi-Fi network instead of installing a malicious
app on the user’s mobile phone. The steps of this attack are as
follows. The attacker first has to detect these privately built Wi-Fi

10/sdcard/opbackup/ChangeOver
11/sdcard/MIUI/backup/Transfer/
12/sdcard/Backup/ChangeOver/
13/sdcard/amihuanji/temp/
14/sdcard/backup/

networks by identifying the specific SSID patterns. Then the at-
tacker persistently monitors the Wi-Fi signals until a certain Wi-Fi
is established. The attacker has then to crack the password and con-
nect to the WLAN; as we have seen in our analysis, the passwords
used to protect these Wi-Fi networks are often not strong enough
and thus the attacker can quickly crack them. Once the password is
cracked, the attacker can eavesdrop on the Wi-Fi and tamper data
using tools such as Ettercap. We notice that all data transmission
protocols we have analyzed in this work are implemented with
an incorrect data integrity validation, and even without any data
confidentiality protection. It is important to note that this attack
requires the attacker to be physically close to the attacked phones
and continuously monitor Wi-Fi signals in order to detect when a
data clone activity is taking place15. Therefore such an attack is un-
likely to be carried at a large scale. Rather it is an attack that is more
likely to be carried out against targeted parties (e.g., individuals
under surveillance).

As we can see from Table 5, the SSID of the Wi-Fi hotspot gener-
ated by all data clone services but Nokia can be predicted, and four
Wi-Fi networks (that is, Gionee, OnePlus, Vivo, and Xiaomi) are vul-
nerable to network-level attacks because of the predictable SSIDs
and insecure Wi-Fi passwords they use. As a result, attackers could
circumvent authentication and connect to the WLAN to conduct
further attacks against the legitimate phones. Note that although
Huawei service uses predictable SSID and insecure passwords, it
restricts the number of connected clients. An attack could only be
conducted if the legal receiver is excluded and replaced by a mali-
cious receiver. Thus we labelHuawei service as “partially vulnerable”
to network-level attack.

We utilized the network inspector of Poirot to conduct man-
in-the-middle attacks as mentioned in Section 3.3.3. Despite pas-
sive data eavesdropping, the attacker could actively tamper the
transferred data to inject malicious contents. We found that in our
investigation, 𝑝𝐵 unconditionally trusts all the cloned data. If an at-
tacker controls 𝑝𝐴 and installs malicious apps, those malicious apps
are transferred and installed to 𝑝𝐵 without prompting warning or
scanning malicious code. More seriously, the attacker could modify
the app data instead of the APK file. In this situation, a benign app
would be exploited easily (e.g., by trusting a file with a malformed
format in the app sandbox).

15Notice of course that the attacker can install a hidden device with the same capabili-
ties in the proximity of the targeted party.
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10/sdcard/opbackup/ChangeOver
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13/sdcard/amihuanji/temp/
14/sdcard/backup/
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and thus the attacker can quickly crack them. Once the password is
cracked, the attacker can eavesdrop on the Wi-Fi and tamper data
using tools such as Ettercap. We notice that all data transmission
protocols we have analyzed in this work are implemented with
an incorrect data integrity validation, and even without any data
confidentiality protection. It is important to note that this attack
requires the attacker to be physically close to the attacked phones
and continuously monitor Wi-Fi signals in order to detect when a
data clone activity is taking place15. Therefore such an attack is un-
likely to be carried at a large scale. Rather it is an attack that is more
likely to be carried out against targeted parties (e.g., individuals
under surveillance).

As we can see from Table 5, the SSID of the Wi-Fi hotspot gener-
ated by all data clone services but Nokia can be predicted, and four
Wi-Fi networks (that is, Gionee, OnePlus, Vivo, and Xiaomi) are vul-
nerable to network-level attacks because of the predictable SSIDs
and insecure Wi-Fi passwords they use. As a result, attackers could
circumvent authentication and connect to the WLAN to conduct
further attacks against the legitimate phones. Note that although
Huawei service uses predictable SSID and insecure passwords, it

15Notice of course that the attacker can install a hidden device with the same capabili-
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restricts the number of connected clients. An attack could only be
conducted if the legal receiver is excluded and replaced by a mali-
cious receiver. Thus we labelHuawei service as “partially vulnerable”
to network-level attack.

We utilized the network inspector of Poirot to conduct man-
in-the-middle attacks as mentioned in Section 3.3.3. Despite pas-
sive data eavesdropping, the attacker could actively tamper the
transferred data to inject malicious contents. We found that in our
investigation, 𝑝𝐵 unconditionally trusts all the cloned data. If an at-
tacker controls 𝑝𝐴 and installs malicious apps, those malicious apps
are transferred and installed to 𝑝𝐵 without prompting warning or
scanning malicious code. More seriously, the attacker could modify
the app data instead of the APK file. In this situation, a benign app
would be exploited easily (e.g., by trusting a file with a malformed
format in the app sandbox).

Table 6: Security evaluation regarding different attacks
against data clone services

Service Communica-
tion Records

Files on
SD card

App-related Data System
SettingsAPK App data

Gionee ✓ ✓ ✓ ✓ ✓

Huawei ✓ ✓ ✓ ✓ ✓

Motorola ✓ ✓ ✗ ✗ ✗

Nokia ✓ ✓ ✓ ✗ ✗

OnePlus ✓ ✓ ✓ ✓ ✓

OPPO ✓ ✓ ✓ ✓ ✓

Vivo ✓ ✓ ✓ ✓ ✓

Xiaomi ✓ ✓ ✓ ✓ ✓

1

We also discovered a particular network hijacking case in the
OPPO data clone serive. The data transmission thread on 𝑝𝐵 does not
check whether its used TCP port (i.e., 8939) is available. Even worse,
the UI of the platform app does not prompt any error information
when the data clone service fails to bind the TCP. As a result the data
clone service on the other device will continue transfer data without
verifying the identity of the receiver. Suppose that a malicious app
on 𝑝𝐵 occupies the 8939 port before a data clone process starts, 𝑝𝐴
will communicate with the malicious app on 𝑝𝐵 and thus sends
user data to the malicious receiver.

4.4 Manufacturer Feedback
We have reported the discovered vulnerabilities and the conse-
quences to the corresponding manufacturers in September 2019.
Followed by our report, we also provided the suggestions to fix
the vulnerabilities. Among the seven manufacturers whose data
clone services are vulnerable, three of them (OnePlus, Vivo, and
Xiaomi) have recognized the vulnerabilities and fixed them16. We
then checked the most recent version of their data clone services.
We found that OnePlus has addressed the data leakage issue by en-
crypting the sensitive data (e.g., contacts and SMS messages) before
data transmission. Instead of establishing an open WLAN, Vivo now
protects the WLAN by adding the password requirement. The pass-
word consists of 8-12 digits of numbers and letters (in upper/lower
cases), which is difficult to crack via brute force attacks. Xiaomi

16We also earned bounty awards from those companies.

now generates a pseudo-random SSID for each device comprised
by DeviceName_ and 4 digits of pseudo-random numbers. For the
other data clone services, we observe that some manufacturers (i.e.,
Oppo, Motorola, Gionee and ) stopped updating the older version of
the systems (Android 5.1, 6.0, and 7.0) since 2018, and thus the data
clone services were not updated either.

5 RELATEDWORK
App Analysis. As functionalities of mobile apps become abundant,
a large number of efforts have focused on large-scale security anal-
ysis of Android apps. Identifying data leakages is the goal of many
such analysis efforts and tools have been developed to facilitate the
analysis. FlowDroid [12] and PiOS [14] statically analyze app code
to track sensitive data flow. FlowDroid [12] optimizes previously
proposed static taint-analysis approaches relying on context, flow,
field and object-sensitivity information. To detect potential privacy
leaks, FlowDroid draws a complete Android lifecycle by including
callbacks handling and UI widgets within the apps. Instead of ana-
lyzing Android apps, PiOS targets iOS apps by analyzing whether
the proposed vetting process may leak sensitive data. Through static
analysis, it checks code paths of each app and pinpoints where the
app first accesses sensitive information and then transmits it over
the network. Due to the lack of source code, PiOS analyzes apps
that are developed in Objective-C code. However, app code analysis
is insufficient when analyzing the data clone service because the
data transmission procedure is not covered by code analysis.

Apart from analyzing the entire Android apps, some approaches
focus on certain issues, such as cryptographic misuses, unautho-
rized access, and backdoor functionalities. As cryptographic prim-
itives are sometimes implemented incorrectly, many approaches
have been proposed to identify cryptographic vulnerabilities. By
gathering the cryptographic vulnerabilities identified by the other
detection tools, such as FixDroid [25]. CrySL [20] and CryptoLint [13],
CryptoGuard [26] is proposed with a set of detection algorithms. To
address the false positive issues, a number of refinement algorithms
based on empirical observations about common programming id-
ioms and language restrictions have been proposed so that the ir-
relevant statements are removed to reduce false alarms. Kratos [28]
finds security issues in access control systems implemented in An-
droid systems. By constructing a precise call graph including all
execution paths, it identifies the paths that third-party apps with
insufficient privilege are able to access sensitive resources. Sim-
ilarly, InputScope [38] focuses on the hidden functionalities (e.g.,
backdoors and blacklists to block unwanted content) implemented
in Android apps. Through static taint analysis and backward slicing,
it checks whether the input data match with the data stored in the
app or retrieved over the network to exploit the hidden secrets. In-
stead of detecting a general type of vulnerability from the Android
app, we identify the potential vulnerabilities based on the potential
threats against the data clone service.

Apart from the static analysis, tools such as TaintDroid [15] and
Charm [31] produce realtime results by executing certain compo-
nents dynamically. TaintDroid detects misbehaving apps by tracking
the flow of privacy-sensitive data through third-party apps. By label-
ing data from privacy-sensitive sources, it identifies sensitive data
propagation through program variables, files, and inter-process
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messages dynamically. Charm [31] identifies vulnerabilities and
bugs in device drives. It executes the remote device driver in a
virtual machine for only servicing the low-level and infrequent
I/O operations through the USB channel. Then analysts are able
to use Charm for manual interactive debugging, record-and-replay,
and enhancing fuzzing. Since both app code and data transmission
need to be analyzed, we combine the static and dynamic analysis to
provide a complete analysis of the data clone procedure. To the best
of our knowledge, none of these security researches have analyzed
data clone apps.
OS Customization Analysis. In order to support a functionality,
manufacturers might need to modify the standard Android system
by embedding support components. However, such customized
components often result in vulnerabilities due to incorrect imple-
mentation [11, 17]. Some previous works have focused on different
customized components for vulnerability detection including cus-
tomized Android phone driver [39], permission re-delegation [16],
vendor-specific certification [32], and insecure validation [37]. In
addition, the corresponding platform apps developed by manufac-
turers might be vulnerable [18, 34]. Our study extends those works
by revealing the insecurity of data clone services.

Specifically, Woodpecker [19] identifies leakages of permissions
or capabilities. By conducting data flow analysis, it explores the
reachability of each dangerous permission from a public interface.
Furthermore,Woodpecker exploits publicly-accessible interfaces and
services with and without requesting permissions from the other
apps to check the explicit capability leaks and implicit capability
leaks. Harehunter [10] detects hanging attribute references (Hares)
vulnerability. A Hares vulnerability occurs when an inter compo-
nent communication (ICC) call refers to a non-existing attribute
(e.g., package, activity, service) due to the customization of Android
system. A malicious app could claims itself as the definition party
of such attributes and hijack the ICC call. In response, Harehunter
compares all the attributes defined by the system app and their
corresponding references to find potential null-reference flaws.
Nonetheless, because more customized components are embed-
ded to support the data clone procedure, security analysis of data
export/import cannot be accomplished by code analysis only. In
contrast, our analysis combines code reverse engineering and data
analysis. Specifically, we extend the study of Shu et al. [30] by dis-
covering temporarily stored data could also be a source of sensitive
information retrieving.
Device-to-device (D2D) Communication Analysis. Data clone
process is related to D2D communication. A survey investigating
potential security threats of D2D communications is by Wang et
al. [33]. Similarly, Liu et al. [23] presented an in-depth empirical
security analysis on mobile D2D network between two Android
devices. A particular case of smart config Wi-Fi provisioning has
been revealed to be very insecure and could lead to the Wi-Fi
password leakage [21]. Our analysis further studies security issues
of Wi-Fi hotspot, Wi-Fi direct, and Bluetooth used in customized
data clone services.

Several approaches have been proposed to secure the D2D net-
work communications. Shen et al. [29] first discussed several attacks
against Wi-Fi D2D communications such as man-in-the-middle
attacks and denial-of-service attacks. They also proposed two pro-
tocols, authentication-string-based key agreement protocol and

SAS-based key agreement protocol, to secure the communication
between Android mobile phones. Besides, Raju et al. [27] proposed
a security protocol to protect individual confidentiality. To address
the vulnerabilities in existing public Wi-Fi hotspots, such as weak
encryption and lack of confidentiality, they designed a solution
to eliminate the dependency on pre-shared information. Unlike
previous work, we focus on the practical aspects (implementation
level) to assess whether the Wi-Fi hotspot is securely set up (i.e.,
SSID/password) and whether the integrity and confidentiality of
the transferred data are assured.

6 CONCLUSION
In this paper, we have investigated the security of popular Wi-
Fi hotspot based data clone services provided by Android phone
manufacturers. We developed an analysis system to help analysts
understand implementation details of closed source data clone ser-
vices, and proposed three security analysis approaches to detect
security flaws in those services. We evaluated our proposed system
and approaches by assessing eight data clone services designed by
mainstream Android phone manufacturers. The results show that
those data clone services are vulnerable to four specific attacks; mil-
lions of released Android phones would thus be vulnerable if they
were to execute such a data clone procedures. We have reported
the discovered security issues to corresponding manufacturers and
helped some of them to fix the flaws. We also claim that developers
should be aware of those risks when designing a similar service.
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