
JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 1

Orchestration or Automation: Authentication
Flaw Detection in Android Apps

Siqi Ma, Juanru Li, Surya Nepal, Diethelm Ostry, David Lo, Sanjay Jha Member, IEEE, Robert H.
Deng Fellow, IEEE, and Elisa Bertino Fellow, IEEE

Abstract—Passwords are pervasively used to authenticate users’ identities in mobile apps. To secure passwords against attacks,
protection is applied to the password authentication protocol (PAP). The implementation of the protection scheme becomes an
important factor in protecting PAP against attacks. We focus on two basic protection in Android, i.e., SSL/TLS-based PAP and
timestamp-based PAP. Previously, we proposed an automated tool, GLACIATE, to detect authentication flaws. We were curious
whether orchestration (i.e., involving manual-effort) works better than automation. To answer this question, we propose an orchestrated
approach, AUTHEXPLOIT in this paper and compare its effectiveness GLACIATE. We study requirements for correct implementation of
PAP and then apply GLACIATE to identify protection enhancements automatically. Through dependency analysis, GLACIATE
matches the implementations against the abstracted flaws to recognise defective apps. To evaluate AUTHEXPLOIT, we collected 1,200
Android apps from Google Play. We compared AUTHEXPLOIT with the automation tool, GLACIATE, and two other orchestration tools,
MalloDroid and SMV-Hunter. The results demonstrated that orchestration tools detect flaws more precisely although the F1 score of
GLACIATE is higher than AUTHEXPLOIT. Further analysis of the results reveals that highly popular apps and e-commerce apps are
not more secure than other apps.

Index Terms—Vulnerability Detection, Password Authentication, Mobile Security

F

1 INTRODUCTION

Mobile devices have become ubiquitous in our lives, and a
large number of apps have been developed for mobile de-
vices to support a wide range of domains such as banking,
social networking and transportation. We have grown so
accustomed to using apps that it is hard to imagine daily
life without them. Hence, for our security it is essential to
assess the implementation of these apps.

In this paper, we analyze the implementations of pass-
word authentication protocols in mobile apps for the fol-
lowing specific reasons. First, most mobile apps use online
services (e.g., Facebook and twitter) which employ user
authentication as the first line of defense in protecting
users’ private data (e.g., account details, interaction history,
private messages). Second, user authentication has been
regarded as one of the weakest links in security. Vulnera-
bilities have been identified in authentication schemes used
in non-mobile online apps, and we believe that similar
vulnerabilities exist in mobile apps. Our analysis focuses on
Android apps as Android is the most widely used mobile
app platform, running on more than 80% of mobile phones
and tablets [1].

• Siqi Ma, Surya Nepal, and Diethelm Ostry are with Data61, CSIRO,
Australia.
E-mail: {siqi.ma, surya.nepal, diet.ostry}@csiro.au

• Juanru Li is work with Shanghai Jiaotong University, Shanghai, China.
Email: roman@sjtusec.com

• Robert H. Deng and David Lo are with Singapore Management Univer-
sity, Singapore. Email: {robertdeng, davidlo}@smu.edu.sg

• Sanjay Jha is with University of New South Wales, Sydney, Australia.
Email: sanjay.jha@unsw.edu.au

• Elisa Bertino is with Purdue University, West Lafayette, USA. Email:
bertino@purdue.edu

Passwords have been the main user authentication
method since the advent of computers. Due to the advan-
tages of using a password, such as it being simple and
inexpensive to create, use and revoke, most developers typ-
ically use a password authentication protocol [2] in mobile
apps. In the basic password authentication protocol (BPAP),
a user sends a combination of username and password in
plaintext to a server through a client app. The server replies
with an authentication-acknowledgement if the received
password is valid. However, BPAP is vulnerable to eaves-
dropping and replay attacks. To protect against such attacks,
developers commonly use two countermeasures: 1) Secure
Socket Layer (SSL) / Transport Layer Security (TLS)-based
password authentication [3]; and 2) nonce-based password
authentication protocols [4]. In SSL/TLS-based password
authentication, SSL first authenticates the server and sets
up a secure connection between the client and the server [5].
Then the client sends the username and password over the
secure connection in order to authenticate the user to the
server. For nonce-based password authentication, a client
uses the user’s password as a secret key to compute a
cryptographic function on a nonce value. It is crucial that the
nonce value is not predictable. Nonce-based password au-
thentication protocols are of two types: challenge-response
password authentication protocol, in which the nonce value
is a random number generated by a server, and timestamp-
based password authentication protocol, in which the nonce
value is the current time at a client.

Although various protection schemes have been pro-
posed to secure these password-based authentication pro-
tocols, a variety of attacks have been devised to inter-
cept/modify passwords ([3], [6], [7], [8]). The password
interception attack [3] targets the cryptographic algorithm

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 2

implemented in the SSL/TLS protocol. Attackers attempt
to break block ciphers in the Cipher Block Chaining (CBC)
mode implemented in the SSL/TLS protocol. Passwords
of Internet Message Access Protocol (IMAP) accounts are
then intercepted. Password stealing and reuse attacks [7] are
crafted to attack two-factor and three-factor authentications.
Since users often use simple passwords and reuse the same
passwords for different accounts, attackers perform phish-
ing attacks or install keyloggers to steal the passwords. Vari-
ous techniques have been proposed to counter these attacks,
such as deploying more sophisticated protocols [9], using
an additional software or hardware infrastructure [10], and
designing stronger cryptographic algorithms [11].

Existing tools that have been developed for similar goals
in other ways, such as detecting vulnerabilities in SSL/TLS
implementations, suffer from several drawbacks: (a) lack of
accuracy due to the analysis of limited features (e.g., only
network APIs), and inability to extract inter-components
methods [12]; (b) inability to identify the portion of the
app code where the password authentication protocol is
implemented, and how to locate all password authentication
protocols that are implemented in an app (for apps that
use multiple protocols) [13]; (c) inability to recognize new
implementation defects because only known attacks are
used to identify a vulnerability [14].

In this paper, we are not concerned with designing
secure protocols or cryptographic algorithms for password-
based authentication. Rather, our goal is to carry out an
analysis of existing Android apps to identify implementa-
tion defects in their password authentication protocols and
we assume that the design of the protocols is secure.

By extracting the requirements for implementing each
password authentication protocol securely from official doc-
uments [15] and websites1, we summarize three common
types of implementation flaws: Flaw 1 - plain password
transmission; Flaw 2 - insufficient SSL/TLS validation; Flaw
3 - incomplete timestamp format. Flaw 1 makes the authen-
tication protocol vulnerable to password eavesdropping and
replay attacks. Flaw 2 makes the authentication protocol
vulnerable to server impersonation and man-in-the-middle
(MITM) attacks. In SSL/TLS-based password authentication
protocol, the client app is required to verify the validation
of the server’s certificate and check its hostname to ensure
that the client is communicating with the correct server.
Finally, Flaw 3 makes the authentication protocol vulnerable
to replay attacks.

To identify these flaws, we have designed and imple-
mented a fully-automated , GLACIATE [16], to assess the
implementation of password authentication protocols.

In automation approach GLACIATE, the templates used
to detect authentication flaws are learnt by a machine learn-
ing algorithm. Such a detection scheme reduces the man-
ual effort of summarizing general patterns. However, an
interesting issue is whether machine learning techniques are
“smarter” than humans in generating such patterns. There-
fore, we designed an orchestration tool, AUTHEXPLOIT, to
identify authentication flaws from app implementations. In
AUTHEXPLOIT, the authentication flaw patterns are first

1. System Approach: https://book.systemsapproach.org/security
/authentication.html

identified manually, and then apply the automated analysis
to detect the flow. The automation part in AUTHEXPLOIT
has two components: App Preprocessing and Flaw Detection.
As first step, AUTHEXPLOIT converts each Android app
into an intermediate representation (i.e., Jimple code in
our paper) and creates its super call graph by applying
intra- and inter-procedural analysis. It then performs flaw
detection by using the super call graph to further statically
analyze the dependencies among functions and variables.
AUTHEXPLOIT finally identifies whether the password au-
thentication protocol implemented in an app matches any
of the three implementation flaws listed above which are
identified and coded manually.

In order to assess the effectiveness of AUTHEXPLOIT,
we created a ground–truth dataset by manually analyzing
1,200 Android apps with respect to the three flaws discussed
above. we also compared the results of AUTHEXPLOIT and
GLACIATE with other two orchestration tools (where some
form of manual efforts are involved), which are two state-of-
the-art SSL/TLS certificate validation tools, MalloDroid [12]
and SMV-Hunter [17], against our dataset. AUTHEXPLOIT
performs better than both MalloDroid and SMV-Hunter by
successfully identifying 627 authentication flaws. Although
GLACIATE has a lower Recall value than AUTHEXPLOIT,
AUTHEXPLOIT detects flaws more accurate with the Preci-
sion value of 93.9%.

Contributions: Overall, our contributions are

• We manually extract the requirements for cor-
rect implementations of secure password authen-
tication protocols from official documents and se-
cure apps. For two commonly used protocols, i.e.,
SSL/TLS-based password authentication protocol
and timestamp-based password authentication pro-
tocol, we identify three common flaws that may
affect app security.

• We develop an orchestrated detection tool, AUTHEX-
PLOIT, that aim to detect authentication flaws. We
then compare the effectiveness of our tool with two
state-of-the-art orchestration tools, and demonstrate
that our tool performs better than them. Finally,we
compare the effectiveness of AUTHEXPLOIT with au-
tomation tool, GLACIATE, to check whether orches-
tration approach is better than automation approach.

• We have carried out several analyses to investigate
the correlations between implementation flaws and
different app features (e.g,. popularity and domain
categories).

Organization: The rest of this paper is organized as follows.
Section 2.3 introduces background information of the secure
password authentication protocols used in Android and
their correct implementations. We illustrate the challenges
of examining authentication in an app in Section 3.2. In
Section 4.2.3, we introduce AUTHEXPLOIT in detail. In Sec-
tion 5.3, we evaluate the effectiveness of AUTHEXPLOIT
by applying it to real-world Android apps and investigate
the widespread authentication implementation. We discuss
related works in Section 6.3. Section 7 concludes the paper
and outlines directions for future work.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 3

2 BACKGROUND

In this section, we present the relevant background about
the techniques used for identifying vulnerable implemen-
tations of password authentication protocols in Android
apps. First, we introduce the most commonly used program
analysis techniques for static analysis in Section 2.1. We then
present the two most commonly used password authen-
tication protocols and describe their security requirements
in Section 2.2. Finally, in Section 2.3 we list three common
implementation flaws and describe how they are exploited
by attackers.

2.1 Static Program Analysis

Different from dynamic program analysis, static program
analysis identifies flaws in a program without running the
program. Therefore, static program analysis locates the exact
code snippet with flaws, and also examines code that is
rarely reached during execution. Generally, control flow
analysis and data flow analysis are applied to extract the
program execution process. Details are elaborated below.

Control Flow Analysis. Control flow analysis [18] is a
technique for determining the execution order of program
statements. The control flow is represented as a control flow
graph (CFG). In a CFG, an entry block and an exit block
are defined, representing the entry and exit of an execu-
tion, respectively. Nodes in the CFG represent a number
of basic blocks, which are a linear sequences of program
instructions. A CFG also includes a number of basic blocks
which are linear sequences of program instructions. An edge
between blocks b and b′ indicates that the execution flows
from b to b′. Therefore edges in a CFG represent all possible
execution paths in the program including infeasible paths
and dead code. The set of execution traces can further be
predicted and specified via the CFG.

Data Flow Analysis. From the created CFG, data flow
analysis is used to trace variable changes when the program
is executed. Data flow analysis gathers information about
the variables of interests and then traces their possible
locations in a program. From each basic block in the CFG,
data flow analysis derives the effects of each operation, and
its corresponding inputs and outputs. This analysis also
optimizes the CFG by removing the infeasible paths and
dead code, because variables in these statements are not
data dependent on any other variables.

2.2 Password Authentication Protocols

A simple password authentication protocol is a weak but
convenient authentication scheme. In the basic password
authentication protocol (BPAP), a client sends a combination
of username and password in plaintext to an authentication
server and the server accepts the user only if the password is
valid. BPAP is efficient in that it requires only one message
from the client to the server without requiring the execution
of cryptographic operations. However, BPAP was originally
intended for users to be authenticated to a local computer
or to a remote server over a closed network; the protocol is
vulnerable to eavesdropping and replay attacks when it is
used over an open network [7], [8], [19].

Two general approaches are proposed to protect BPAP
against attacks: SSL/TLS-based password authentication
protocol and nonce-based password authentication proto-
col.

SSL/TLS-based password authentication protocol. In this
protocol, a secure channel is built by using SSL/TLS to pro-
tect the communication between the client and the server.
All transmitted messages through the secure channel are
encrypted, including the username and password of each
client.

To build a secure connection, the following verification
steps MUST be executed:

1) A client sends a message to the server to initiate
SSL/TLS communication.

2) The server then sends back a public key certificate.
3) After receiving the certificate from the server, the

client verifies whether the certificate is valid. If the
certificate is valid, the client creates and sends an
encrypted key back to the server. Otherwise, the
communication fails.

4) The server decrypts the key and delivers a digitally
signed acknowledgement to start an SSL/TLS en-
crypted connection.

In the verification steps, verifying the public key cer-
tificate received from the server is the most essential step.
A valid certificate is required to be signed by a Certificate
Authority (CA). The client MUST validate each certificate
by checking:

1) Whether the subjectAltname field and the host
portion of the server’s URL match [12];

2) Whether the CA that signed the certificate is
trusted [20];

3) Whether the signature of the certificate is unex-
pired [21].

Nonce-based password authentication protocol. Another
mitigation to counter password eavesdropping and replay
attacks [22] is the nonce-based password authentication
protocol, which relies on an arbitrary number (i.e., a nonce).
The nonce is only used once in a cryptographic commu-
nication, i.e., the communication between the client and the
server in our paper. According to the particular approach for
generating the nonce, the protocol is classified as challenge-
response or timestamp-based.

For the challenge-response protocol, a server first gener-
ates a nonce by using a pseudo-random number generator
and sends it to the client as a challenge. The client then
uses his/her own password as a secret key to encrypt the
nonce and sends the ciphertext to the server for identity
verification. Besides using a pseudo-random number, using
a timestamp as a nonce (i.e., the timestamp-based password
authentication protocol) is another way to label each unique
message.

The construction of a secure nonce-based password au-
thentication protocol MUST comply with the following
requirements:

1) The pseudo-random number used for the challenge-
response password authentication protocol should
be unpredictable.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 4

2) The timestamp involved in the timestamp-based
password authentication protocol should have the
format of Year/Month/Day/Hour/Minute/Second.

Note that we cannot determine the randomness of the
pseudo-random number generated by the server without
access to the source code; thus we only consider implemen-
tation flaws in the timestamp-based password authentica-
tion protocol in this paper.

2.3 Flaws in Protocol Implementations

A password authentication protocol is secure only if it
complies with the above mentioned requirements. However,
implementing a password authentication protocol correctly
is not easy. We discovered the following flaws that make im-
plementations non compliant with the above requirements.

Flaw 1 : Plain password transmission. This flaw is an imple-
mentation of BPAP over an insecure network without any
protection, i.e. users’ passwords are transmitted in plaintext.
It is vulnerable to eavesdropping and replay attacks.

Flaw 2 : Insufficient SSL/TLS validation. This is a common
flaw in the implementations of secure password authentica-
tion protocols. Unless all the validation requirements listed
in Section 2.2 are satisfied, Android apps may trust invalid
certificates (i.e., certificates signed by untrusted CAs, self-
signed certificates, and expired certificates) or accept invalid
hostnames. This allows an attacker to connect to apps by
providing a forged certificate to steal users’ passwords. Ad-
ditionally, a malicious counterfeit server can connect with
an app by using someone else’s valid certificate if the app
accepts all hostnames.

Flaw 3 : Incomplete timestamp format. This flaw makes the
timestamp used for authentication repeatable. For example,
a timestamp in the format of “Minute/Second” allows the
protocol message to be repeated every hour with the same
minute and second.

3 EXAMPLE

In this section, we first illustrate an implementation defect
by using a running example of code with Flaw 2 (i.e., insuf-
ficient SSL/TLS validation), and then highlight challenges
in detecting flaws in apps.

3.1 Code Example

For illustration purpose, we consider an example from a
highly popular communication app with ratings ≥ 4.5 and
downloaded ≥ 100,000 times. The example (in Jimple code)
given in Listing 1 is the code that allows the app to connect
with any server without verifying the hostname.

The example includes three functions in two classes:
trustAllHosts (lines 10-26) and getTrustedVerifier
(lines 27-39) defined in class1, and verify (line 51-60)
defined in class2. Function setHostnameVerifier in
line 23 takes as input of a hostname, which is assigned in
line 22. To make a secure connection, the assigned host-
name must be verified by function getTrustedVerifier.
Although the validation function verify is invoked, it is

set to return 1 (TRUE) without executing the hostname
verification, which suffers from Flaw 2.

Listing 1. An Example of Flaw 2
1 // An Example of Flaw 2: Insufficient SSL/TLS

validation
2 public class class1 extends java.lang.Object
3 {
4 public void < init>()
5 {
6 class1 $r0;
7 $r0 := @this: class1;
8 specialinvoke $r0.<java.lang.Object: void < init>()

>();
9 }

10 public class1 trustAllHosts ()
11 {
12 class1 $r0;
13 java.net.HttpURLConnection $r1;
14 boolean $z0;
15 javax.net. ssl .HttpsURLConnection $r2;
16 javax.net. sll .HostnameVerifier $r3;
17 $r0 := @this: class1;
18 $r1 = virtualinvoke $r0.<class1:java.net.

HttpURLConnection getConnection()>();
19 $z0 = $r1 instanceof javax.net. ssl .

HttpsURLConnection;
20 if $z0 == 0 goto label1;
21 $r2 = (javax.net. ssl .HttpsURLConnection) $r1;
22 $r3 = staticinvoke <class1: javax.net. ssl .

HostnameVerifier getTrustedVerifier ()>();
23 virtualinvoke $r2.<javax.net.ssl .

HttpsURLConnection: void
setHostnameVerifier(javax.net.ssl.
HostnameVerifier)>($r3);

24 label1:
25 return $r0;
26 }
27 private static javax.net. ssl .HostnameVerifier

getTrustedVerifier ()
28 {
29 javax.net. ssl .HostnameVerifier $r0;
30 class2 $r1;
31 $r0 = <class1: javax.net. ssl .HostnameVerifier

TRUSTED VERIFIER>;
32 if $r0 != null goto label1;
33 $r1 = new class2;
34 specialinvoke $r1.<class2: void < init>()>();
35 <class1: javax.net. ssl .HostnameVerifier

TRUSTED VERIFIER> = $r1;
36 label1:
37 $r0 = <class1: javax.net. ssl .HostnameVerifier

TRUSTED VERIFIER>;
38 return $r0;
39 }
40 }
41

42 final class class2 extends java.lang.Object
implements javax.net.ssl.HostnameVerifier

43 {
44 void < init>()
45 {
46 class2 $r0;
47 $r0 := @this: class2;
48 specialinvoke $r0.<java.lang.Object: void < init>()

>();
49 return ;
50 }
51 public boolean verify(java.lang.String , javax.net. ssl

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 5

.SSLSession)
52 {
53 class2 $r0;
54 java.lang.String $r1;
55 javax.net. ssl .SSLSession $r2;
56 $r0 := @this: class2;
57 $r1 := @parameter0: java.lang.String;
58 $r2 := @parameter1: javax.net.ssl.SSLSession;
59 return 1;
60 }
61 }

3.2 Challenges
Our detailed analysis of the flaw in Listing 1 clearly shows
the major challenges in the systematic identification of flaws
from the implementation:

Challenge 1: How to match specific implementation flaws
against code? In theory, the design of a password authen-
tication protocol is simple and well-defined; however, in
practice, implementations are complicated. As developers
have various coding styles, the identification of code frag-
ments that implement password authentication protocols is
challenging. In order to check whether there are any flaws
(described in Section 2.3) in an implementation, we need to
convert each flaw into a flexible intermediate representative
template that can be applied to different coding styles, while
at the same time returning few/no false positives.

Challenge 2: How to efficiently and accurately identify the
implementation flaws? To detect an implementation flaw,
we must analyze whether the implementation of the pass-
word authentication protocol suffers from any of proposed
the three flaws. As the related implementation code is a code
snippet, extracting all program dependencies structure of
an app is quite expensive, and in addition most of those
structures are not relevant to our analysis2.

Challenge 3: How to extract a complete protection scheme
for the password authentication protocol? Just analyzing
the code snippet of password authentication is insufficient
for assessing whether the protocol is secure. A secure
password authentication protocol is supported by at least
one protection scheme that protects either the connection
between the server and the client by using SSL/TLS or the
transmitted password by using cryptographic primitives.
How to identify the implemented scheme(s) used to support
the password authentication protocol is equally important.

4 DESIGN

For GLACIATE, it uses a machine learning approach to
learn flaw patterns from vulnerable apps. However, de-
velopers usually name the customized functions variously.
It is imprecise by using the machine learning approach
to determine whether a function is relevant to authentica-
tion. To address the issue of GLACIATE, we construct an
orchestrated approach, AUTHEXPLOIT, to by using expert
predefined templates (human expert is involved). Having

2. On average, if the size of an application is larger than 10K, the
number of Jimple code files is more than 10,000. If the size is 5k - 10k,
the number of Jimple code files is around 6,000.

the defined templates, it takes the following steps to auto-
matically detect implementation flaws in Android apps (see
Figure 1).

• Step 1: Select BPAP. This checks whether an app has
implemented the BPAP.

• Step 2: Recognize protection schemes. For the apps
using BPAP, this determines what protection schemes
are implemented to protect BPAP.

• Step 3: Discover flaws. According to the imple-
mentation requirements of each protection scheme,
this step matches the known requirements with the
implementations.

4.1 App Preprocessing
The preprocessing operation is organized in several steps
described below.

4.1.1 App Decompilation.
AUTHEXPLOIT is built on top of Soot [23] and works di-
rectly on Dalvik bytecode. Applied to Android apps, it
translates lowlevel Android bytecode into its intermediate
representation (IR), namely, Jimple code. In Jimple code [24],
Soot represents low-level code as Scene, SootClass,
SootMethod, SootField, and Body.

4.1.2 Super Call Graph Generation.
From the Jimple code, AUTHEXPLOIT creates a super call
graph for each app. Each node in the super call graph is a
function, represented in the format {Statement, Method Name,
Class Name}. The statement is the current line of statement.
The method name and the class name separately represent
the SootMehod and the SootClass where the statement
belongs to. A directed edge between two nodes represent
three types of relationships: function calls, control flows, and
data flows.

AUTHEXPLOIT takes the following steps to construct a
super control flow graph.

1) It builds a control flow graph (CFG) for each
SootMethod. Following the execution sequence, it
then conducts an intra-procedural analysis [25] and
connects two statements by adding directed edges.

2) It extracts correlations among functions by identify-
ing function calls in each SootMethod. According
to each function call, it adds an edge directed from
the caller to the callee.

3) It collects data flows by analyzing the CFG built
in Step 1). Starting from the input parameters and
declared variables in each SootMethod, it extracts
data dependencies between two nodes. A data flow
edge is created between two nodes if a node is data
dependent on another node; the edge is labeled
with the correlated parameter/variable. The edge
represents that the value of an input parameter or
a variable flows from the parent node to the child
node.

4) It constructs a super call graph by combining the
edges generated in Steps 1), 2), and 3).

Note that dead code may have been included in the
super call graph as an independent graph. Therefore, we

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 6

Super Call Graph

Generation

Super Call Graph

Generation

Indicator

Instruction Locator

App

Decompilation

org.apache.*.ji

mple

org.apache.*.ji

mple
com.google.*.

jimple

com.google.*.

jimplecom.wechat.*.

jimple

com.wechat.*.

jimple

org.apache.*.ji

mple
com.google.*.

jimplecom.wechat.*.

jimple
MOBILE

APP

org.apache.*.ji

mple
com.google.*.

jimplecom.wechat.*.

jimple
MOBILE

APP

App

Decompilation

org.apache.*.ji

mple
com.google.*.

jimplecom.wechat.*.

jimple
MOBILE

APP

Static Program

Slicing

Static Program

Slicing
Misuse

Detection

Rule 3
Rule 2

Rule 1

Rule 3
Rule 2

Rule 1

Misuse

Detection

Rule 3
Rule 2

Rule 1

Indicator

Instructions

Fig. 1. Overview of AUTHEXPLOIT

remove these independent graphs to improve the efficiency
of AUTHEXPLOIT because they are irrelevant to any other
code snippets.

4.2 Flaw Location
By taking as input the Jimple code of each app and the
constructed super call graph, AUTHEXPLOIT outputs a de-
tection report including the type of flaw and its location.
First, AUTHEXPLOIT identifies whether the BPAP is im-
plemented in an app. It then determines the protection
scheme designed for the BPAP. It finally checks whether the
implemented protection scheme complies with the security
requirements.

4.2.1 Indicator Instruction Locator
Instead of creating flaw patterns automatically, AUTHEX-
PLOIT requires that some manual-observed indicator instruc-
tions to locate the BPAP code and the relevant protection
schemes. An indicator instruction is a function that is re-
lated to the implementation of the password authentication
protocol in Android. If any of these indicator instructions is
invoked in an app, it is then labeled as BPAP-related.

To collect the APIs that MUST be invoked in the
implementation of password authentication protocols, we
manually learn the correct implementations from official
documents in AndroidDeveloper3 and code from Stack Over-
flow4 – this addresses Challenge 1 mentioned in Section 3.2.
Finally, 16 indicator instructions that have selected based
on the manual analysis are listed in Table 1. Since these
indicator instructions are the official APIs provided by Java
programming languages, we assume that the authentication
procedure implemented in the Android apps must invoke
at least one of them to achieve PAP. Details about each
indicator instruction are introduced below.

3. Android Developer: https://developer.android.com/
4. Stack Overflow: https://stackoverflow.com/search?q=password

+authentication

BPAP. AUTHEXPLOIT relies on indicator instructions 1 and 2
to identify whether a BPAP is implemented in an app. Func-
tion getPassword is called to return a user’s password. A
combination of the username and the password is returned
by function requestPasswordAuthentication.

SSL/TLS. Indicator instructions 3 - 12 are commonly used
in the implementation of SSL/TLS protocol. Indicator
instructions 3 - 5 are used to create a socket connection.
Function createSocket creates a connection with
a specified remote host at a specified port. Function
getInstance in class javax.net.ssl.SSLContext
can specify which protocol to use (e.g., SSL, TLS).
A function call of getSession tries to set up a
handshake session through the socket. Since SSL/TLS-
based password authentication protocol requires a
correct certificate validation, indicator instructions 6 -
9 may be called. Function getLocalCertificates
returns the certificate that is sent to the peer. While
using TrustManager, function getInstance in class
javax.net.ssl.TrustManagerFactory is invoked.
Functions verify and checkValidity are certificate
validation methods. Indicator instructions 10 - 12 are
used in the implementation of hostname verifier. Function
verify in class javax.net.ssl.HostnameVerifier
has to be invoked To verify a hostname. In both classes of
javax.net.ssl.HttpsURLConnection and
org.apache.http.conn.ssl.SSLSocketFactory,
each specifies a verification function
setHostnameVerifier to accept the valid hostname
for secure connection construction.

Timestamp. Indicator instructions 13 - 16 are timestamp-
related functions. Functions currentTimeMillis()
and nanoTime() generate unique timestamps in the
format of “YYYY-MM-DD hh:mm:ss”. Functions init
and toMillis from class java.util.Date and
class java.util.concurrent.TimeUnit generate

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 7

TABLE 1
Indication Instructions

Password
Authentication Protocol

Instruction # Indicator Instruction

BPAP
1 java.net.PasswordAuthentication char[] getPassword();

2 java.net.Authenticator java.net.PasswordAuthentication requestPasswordAuthenti-
cation(java.lang.String, java.net.InetAddress, int, java.lang.String, java.lang.String,
java.lang.String, java.net.Authenticator$RequestorType)

SSL-based

3 javax.net.ssl.SSLSocketFactory java.net.Socket createSocket(java.lang.String, int);

4 javax.net.ssl.SSLContext javax.net.ssl.SSLConext getInstance (java.lang.String);

5 javax.net.ssl.SSLSocket javax.net.ssl.SSLSession getSession();

6 javax.net.ssl.SSLSession java.security.cert.Certificate[] getLocalCertificates()

7 javax.net.ssl.TrustManagerFactory javax.net.ssl.TrustManagerFactory
getInstance(java.lang.String);

Password 8 java.Security.cert.X509Certificate void verify(java.security.PublicKey)

Authentication 9 java.security.cert.X509Certificate: void checkValidity();

Protocol 10 javax.net.ssl.HostnameVerifier boolean verify(java.lang.String,
java.net.ssl.SSLSesstion);

11 javax.net.ssl.HttpsURLConnection void setHostnameVeri-
fier(javax.net.ssl.HostnameVerifier);

12 org.apache.http.conn.ssl.SSLSocketFactory void setHostnameVeri-
fier(org.apache.http.conn.ssl.X509HostnameVerifier);

Timestamp-Based

13 java.lang.System long currentTimeMillis();

14 java.lang.System long nanoTime();

Password
Authentication Protocol

15 java.util.Date void init();

16 java.util.concurrent.TimeUnit long toMillis(long);

timestamps as “Days, Hours, Minutes, Seconds”. It is
important to note that we only analyze the code snippets
that invoke both the timestamp instructions and BPAP
instructions to ensure the effectiveness and efficiency of our
detection.

Given the indicator instructions, AUTHEXPLOIT matches
nodes in the super call graph of each app to identify the
BPAP. For the apps labeled as BPAP-related, AUTHEXPLOIT
further performs static program slicing to analyze its imple-
mentation in detail.

4.2.2 Static Program Slicing
To learn the root cause of each flaw, AUTHEXPLOIT applies
program slicing [26] (forward [27] and backward [28] pro-
gram slicing). By analyzing a specific subset of the behavior
defined in a given program, AUTHEXPLOIT extracts corre-
lations between the BPAP and the protection schemes in an
app to determine whether they are relevant to each other.

According to the matched nodes in the super call graph,
AUTHEXPLOIT locates the code snippet with BPAP. It fur-
ther identifies SSL/TLS and timestamps. Our approach to
identify the location of relevant code snippet addresses
Challenge 2 and Challenge 3 (see Section 3.2) since AU-
THEXPLOIT only recognizes statements that might be related
to password authentication protocols. AUTHEXPLOIT then
traverses the program backward or forward starting from
a matched node (i.e., the function that matches with any
indicator instructions). It initially creates an empty data flow
set in the form of < On, Op > to record the execution,

where On is a variable or a function. Op is a variable, a
value, a function call, or a field. < On, Op > indicates that a
variable On is assigned by Op or a function On takes Op as
input. AUTHEXPLOIT takes the following two steps to add
the dependent objects to the data flow set. First, it extracts
variables that are taken as input of an indicator instruction
or assigned by indicator instructions. Then, it moves for-
ward or backward to analyze the dependencies and extracts
operations on the other dependent variables. This algorithm
does not terminate until a variable is assigned to a real value
or the super call graph terminates.

4.2.3 Misuse Detection
Based on data and control dependencies defined for each
app, AUTHEXPLOIT checks whether the code has any of the
three flaws discussed in Section 2.2. Specifically, it checks
whether the implementation of the password authentication
protocol complies with the corresponding requirements.

Flaw 1 : Plain password transmission. According to the in-
dicator instruction 1 or 2, AUTHEXPLOIT determines where
the password is. If it does not detect any additional protec-
tion scheme that is dependent on the password, it labels the
app as insecure in that users’ passwords are transmitted in
plaintext.

Flaw 2 : Insufficient SSL/TLS validation. AUTHEXPLOIT
analyzes certificate signatures and hostnames separately.
First, it identifies the node with indicator instruction 6. It
returns the certificate that is used during communication.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 8

Then, it analyzes the nodes that are related to the certificate.
If a validation function is found and it never throws an
exception or reports an invalid certification (i.e., return true
by default), AUTHEXPLOIT regards the implementation as
affected by Flaw 2. In addition, TrustManager is another
way to manage trust-related information. AUTHEXPLOIT
thus analyzes the implemented TrustManager and checks
if it reports invalid certifications.

Depending on the connection with customized host-
name verification, AUTHEXPLOIT relies on either in-
dicator instructions 11 or 12. It further examines
the verification function and its return value. AU-
THEXPLOIT regards an implementation as vulnerable
if the input of setHostnameVerifier is set as
ALLOW_ALL_HOSTNAME_VERIFIER or the customized ver-
fication function returns TRUE by default.

Flaw 3 : Incomplete timestamp format. AUTHEXPLOIT ex-
tracts the dependence relationship between the timestamp-
related indicator instructions and the BPAP. If they are
correlated, it further examines the format of the timestamp
(i.e., the value assigned to the timestamp variable). AU-
THEXPLOIT finds a flaw if the format is incomplete, that is,
the required format “Year/Month/Day/Hour/Minute/Sec-
ond” is not followed. For indicator instructions 13 and 14,
they generate a valid timestamp format only if their return
types are defined as “long”; otherwise, the timestamp is
incomplete. In addition, AUTHEXPLOIT checks the format
of the date format when the indicator instructions 3 and 4
are detected. It only classifies the implementation secure if
the format of “Days” is customized as “YYYY-MM-DD”.

5 EVALUATION

In this section, we conduct two experiments to analyze
the implementation of password authentication in Android
apps. First, we assess the effectiveness of orchestrated and
automated approaches for exploring authentication flaws in
Android apps. Then, we analyze the correlations between
the occurrence of authentication flaws and various app
characteristics.

5.1 Assessment of Orchestration Vs Automation
5.1.1 Dataset
We randomly collected 1,200 free apps from the Official
Google Play site5. In order to ensure that our dataset has
a wide coverage and does not have a bias towards any
particular type of app, we included apps from six categories:
Communication, Dating, Finance, Health & Fitness, Shop-
ping, and Social Networking. We downloaded 600 highly
popular apps (100 in each category) which had at least 1,000
ratings and four stars or more. The other 600 apps are less
popular (100 in each category) with 200 or fewer ratings.
The size of the apps used ranges from 1MB to 70MB.

Due to the lack of an open source labeled dataset of apps
with identified authentication flaws, we created our own. As
most implementations of password authentication protocols
follow the same structure, we believed that the structures
are generalizable enough for our purpose.

5. Google Play: https://play.google.com/store?hl=en

For creating this ground-truth dataset, we asked a team
of annotators (1 PhD student and 2 postdoctoral research
fellows), all with more than 7 years of programming ex-
perience in Java, to check implementations of password
authentication protocols in apps. We first required team
members to label apps independently. Then all members
went through the labels together and discussed apps that
were labeled differently. The team had to come to an agree-
ment before an app could be included in the dataset. To
evaluate whether the agreement was good enough, we com-
puted the Fleiss’s Kappa score [29]. The kappa score of the
agreement is 0.901, which means there was almost perfect
agreement. Ultimately this procedure found a total of 1,205
implementations of password authentication protocols in
742 Android apps (since some apps implement multiple
schemes), and 1,087 authentication flaws were identified in
695 apps (Flaw 1: 284, Flaw 2: 736, Flaw 3: 67).

5.1.2 Experiment Design
To evaluate the performance of AUTHEXPLOIT, we gen-
erated an evaluation matrix of Precision, Recall, and F1
metrics. Precision measures how precise/accurate our tool
is; recall reflects how many vulnerabilities are actually de-
tected; and F1 is used to balance precision and recall. They
are defined as follows:

Precision =
TP

TP + FP

Recall =
TP

TP + FN

F1 = 2 · Precision ·Recall
Precision+Recall

where TP is the number of authentication flaws that are
detected correctly, FP is the number of authentication flaws
that are detected incorrectly (false positives), and FN is the
number of authentication flaws that are not detected.

5.1.3 Performance Comparison
To evaluate the detection effectiveness of orchestrated and
automated tools, not only did we compare our orchestration
approach, AUTHEXPLOIT, with our proposed automation
tool, GLACIATE [16], but also compares with two state-
of-the art orchestration tools, MalloDroid [12] and SMV-
Hunter [17]. Similar to AUTHEXPLOIT, both MalloDroid and
SMV-Hunter require manual efforts; MalloDroid relies on
predefined rules to identify vulnerable implementations,
and SMV-Hunter triggers vulnerabilities by using manu-
ally generated inputs. Different from AUTHEXPLOIT and
GLACIATE, MalloDroid and SMV-Hunter only focus on
examining the correctness of the SSL/TLS implementation.

For comparison we applied AUTHEXPLOIT,
GLACIATE, MalloDroid, and SMV-Hunter to the entire
dataset. As GLACIATE relies on agglomerative hierarchical
clustering to learn flaw patterns automatically, we used
10-fold cross validation [30] to evaluate the performance.
Following the original settings of GLACIATE, we set
Tdist = 1.3 and minrule = 2.

Since MalloDroid and SMV-Hunter only detect SSL/TLS-
related vulnerabilities (i.e., Flaw 2 in this paper), we limited
AUTHEXPLOIT and GLACIATE to detect Flaw 2 in this

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 9

TABLE 2
Detection Result: AUTHEXPLOIT, MalloDroid, SMV-Hunter, and GLACIATE

Flaw
AUTHEXPLOIT MalloDroid SMV-Hunter GLACIATE

Detected Correct Detected Correct Detected Correct Detected Correct

Flaw 2 668 627 241 201 627 572 751 686

Precision 93.9% 91.3% 93.9% 91.2%

Recall 85.4% 27.3% 77.7% 93.5%

F1 89.5% 42.3% 83.9% 92.4%

experiment. From the results, we computed the Precision,
Recall and F1 over the entire dataset for each tool.

Table 2 shows the assessment results. Specifically, the au-
tomated tool, GLACIATE, performed better than the other
tools, achieving a F1 of 92.4%. Different from GLACIATE,
the other three detection tools are orchestration tools that
rely on manual efforts to determine the vulnerable patterns.
Therefore, AUTHEXPLOIT, MalloDroid, and SMV-Hunter
achieved a higher precision than GLACIATE. More specifi-
cally, AUTHEXPLOIT has the highest precision that correctly
detected 627 out of 736 SSL/TLS authentication flaws, with
the Precision value of 93.9%. Comparing with GLACIATE,
AUTHEXPLOIT has a 2.96% better precision. Through our
manual inspection, we found that GLACIATE filtered out
some control flows that contain customized functions. For
these situations, developers generally declared authentica-
tion activities into different Java classes. When the declared
activities are too complicated, GLACIATE fails to identify
the correlations among these Java classes.

In addition, MalloDroid only detected 201 flaws out of
736 SSL/TLS-related authentication flaws, achieving a re-
call of only 27.3%. AUTHEXPLOIT detected about 2 times
more SSL/TLS-related authentication flaws than MalloDroid.
SMV-Hunter successfully detected 572 SSL/TLS-related au-
thentication flaws with Precision, Recall and F1 values
of 91.2%, 77.7%, and 83.9%. Compared with SMV-Hunter,
AUTHEXPLOIT identified 9.6% more flaws and has a 2.9%
better Precision. This means that AUTHEXPLOIT generates
proportionally fewer false positives than SMV-Hunter.

TrustManagers are responsible for managing the trust
material that is used for deciding whether the received pub-
lic key certificates should be accepted. Besides the vulnera-
ble TrustManagers detected by MalloDroid, AUTHEXPLOIT
also found three new types of vulnerable TrustManagers,
namely BlindTrustManager, InsecureTrustManager and All-
TrustingTrustManager. Apps with these vulnerable Trust-
Managers suffer from Flaw 2.

5.1.4 Further Analysis of Performance

In comparing the detection performance, we found that
MalloDroid and SMV-Hunter fails to analyze apps with au-
thentications implemented in different classes.

AUTHEXPLOIT and GLACIATE did fail to analyze some
apps successfully. Since they were built on top of Soot, each
app has to be decompiled using Soot. In total, Soot was un-
able to decompile 184 apps, failing in “Soot.PackManager”.
This method runs the ThreadPoolExecutor multiple times,
and the executor Runnable is unable to handle those threads

separately. These fail-to-decompile apps will be reconsid-
ered when Soot is next upgraded6.

5.2 Characteristics of Apps with Authentication Flaws
To gain further insights, we posed the following questions
to determine whether the occurrence of authentication flaws
is correlated with selected app characteristics:

• RQ1: Are paid apps more secure than free apps?
• RQ2: Are highly popular apps more secure than less

popular apps? How long does it take to repair an
authentication flaw?

• RQ3: Which is the most secure category, e.g., e-
commerce apps?

• RQ4: Which party is responsible for these authenti-
cation implementation flaws - third party packages
or developers?

5.2.1 RQ1: Paid vs Free
From a user’s perspective, one might intuitively expect that
a paid app would be designed by a professional developer,
and thus be more secure than a free app. However, previous
research has shown that paid apps have more vulnerabilities
since they include more code and functionalities [31]. Hence,
we hypothesized that being paid or not does correlate with
the correctness of password authentication implementation.
To evaluate the relationship between payment and authen-
tication flaws, we randomly downloaded the top-150 paid
apps and the top-150 free apps from Google Play. We ran
AUTHEXPLOIT to detect authentication flaws in these apps,
and for each app.

We used the Mann Whiteney U test [32], intended for
testing differences in the means of two independent sam-
ples. It determines the significance of the differences in the
occurrence of authentication flaws in paid and free apps.
The test is applied to validate the following null (H0) and
alternative (H1) hypotheses:

• H0: The mean number of authentication flaws found
in free apps ≤ the mean number of authentication
flaws found in paid apps.

• H1: The mean number of authentication flaws found
in free apps > the mean number of authentication
flaws found in paid apps.

We ran the Mann Whitney U Test by performing a
one tail test and setting the significance level at 5%. The

6. The exception, “ERROR heros.solver.CountingThreadPoolExecutor
- Worker thread execution failed: Dex file overflow”, was posted in
March, 2018. Soot might solve this problem in its next version.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 10

calculated result shows that p − value = 5.4e−8 < 5%.
Thus, H0 is rejected, which means that authentication flaws
found in paid apps are significantly fewer than flaws found
in free apps.

5.2.2 RQ2: Highly Popular vs Less Popular
The popularity of apps might also influence the implemen-
tation of password authentication protocols. We hypothe-
sized that highly popular Android apps are not more secure
than less popular apps. A prior study by Scholte et al. [33]
has concluded that the highly popular web apps are not
less vulnerable than the less popular ones. The following
analysis was conducted on the vulnerable apps detected
by AUTHEXPLOIT to evaluate the correlation between app
popularity and authentication flaws.

The null (H0) and alternative (H1) hypotheses for the
Mann Whiteney U Test are:

• H0: There is no difference in the mean number of
authentication flaws found in the highly and less
popular apps.

• H1: There is difference in the mean number of
authentication flaws found in the highly and less
popular apps.

For this dataset, we ran the Mann Whitney U Test
as a one tail test with alpha = 0.5. The calculation gave
p − value = 0.579 > 0.5, which means H0 cannot be
rejected. Thus, there is no statistically significant differences
between the number of authentication flaws found in the
highly popular and less popular apps.

Besides, we also investigated how promptly developers
fix authentication flaws. We randomly chose 200 apps and
downloaded their previous updated versions at intervals of
three months. Figure 2 reports the results of such analysis.
AUTHEXPLOIT initially found that the number of apps with
Flaws 1, 2, 3 are 13, 24, 4, respectively. Then an analysis of
the subsequent versions showed that most authentication
flaws are fixed after six months. However, 13 apps retained
their flaws for more than one year.

3 m t h s 6 m t h s 9 m t h s 1 2 m t h s
0
2
4
6
8

1 0
1 2
1 4
1 6

Nu
mb

er
of

ap
ps

 be
ing

 fix
ed

T i m e i n t e r v a l t o f i x f l a w s

 N u m b e r o f a p p s f i x e d F l a w 1
 N u m b e r o f a p p s f i x e d F l a w 2
 N u m b e r o f a p p s f i x e d F l a w 3

Fig. 2. Time Interval to Fix Authentication Flaws.

5.2.3 RQ3: App Categories
Since users might have different security expectations for
different application categories, we were interested in as-
sessing whether e-commerce apps are more secure than

apps in other categories. Vijayaraghavan and Kaner [34]
highlighted that e-commerce apps often use secure proto-
cols, such as SSL, to protect online transactions. Therefore,
we were expecting that the password-based authentication
schemes of e-commerce apps (e.g., shopping and finance
apps) would be more secure than apps in other categories.
We used the flaw detection results for the different cate-
gories to analyze the association between app categories and
authentication flaws.

We used the Chi-Square Independent test [35] to deter-
mine whether there is a significant relationship between two
categorical variables: type of authentication flaw and app
categories (i.e., Communication, Dating, Finance, Health &
Fitness, Shopping, and Social Networking). The test is used
to validate the following null (H0) and alternative (H1)
hypotheses:

• H0: There is no association between authentication
flaws and app categories.

• H1: There is an association between authentication
flaws and app categories.

We set the significance level to 5%. H0 is rejected if the p-
value ≤ 5%. The Chi-Square Independent test gave p(χ2 >
16.040) = 0.379. Thus,H0 cannot be rejected, i.e., there is no
statistically significant association between app categories
and authentication flaws.

We further built a multiple linear regression model to
estimate how these categories are affected by the occurrence
of authentication flaws. Regarding the coefficients as note-
worthy, a category is statistically significant if p < 5%. Based
on the results of this multiple linear regression model, we
observed that no category is significantly associated with
the authentication flaws when p − value > 5% is used as
test.

5.2.4 Causes of Authentication Flaws
There are a number of libraries available for developers to
implement secure password authentication protocols [36],
such as native SSL/TLS libraries supported by Android,
Firebase Authentication, GnuTLS, openSSL7. We further
examined the ground-truth dataset to investigate whether
the found authentication flaws were related to the use of
external libraries for implementation or due to incorrect
custom implementations by developers.

By analyzing the flawed customized implementations,
we observed that they are written as not to check the host-
name or never throw exceptions regardless of the certificate
validity. A more interesting finding is that although an
external library provides an option to build a secure SSL
implementation, developers still choose to ignore invalid
certificates and hostnames even though an option of veri-
fication is provided. One potential reason why developers
do so is that verifying certificates and hostnames may slow
the applications at runtime.

5.3 Limitation
By manually inspecting the detection results, we conclude
the following limitation of AUTHEXPLOIT.

7. Firebase: https://firebase.google.com/docs/auth/; GnuTLS:
https://www.gnutls.org/; openSSL: https://www.openssl.org/

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 11

[Unsuccessful Decompilation.] Since we build AUTHEx-
ploit on top of Soot, each application has to be decompiled
using Soot. In total, Soot fails to decompile 184 appli-
cations, which is caused by “Soot.PackManager”. It runs
the ThreadPoolExecutor multiple times, and the executor
Runnable is unable to handle those threads separately. These
unsuccessful applications can be analyzed again once Soot
is upgraded 8.

[Complex Dependencies.] For some cases, the same Soot-
Field may be used by multiple methods. When applying
program dependency analysis, two independent SootMeth-
ods may be considered as dependent because of the mutual
SootField. This impacts the analysis since two indepen-
dent SootMethods will be analyzed as one. Suppose that
two independent SootMethods method1 and method2 are
connected through a mutual SootField. In method1, a PAP
with the timestamp scheme uses a timestamp generated by
calling the method currentTimeMillis(). However, method2
only extracts the date from method currentTimeMillis() for
the other purpose. AUTHExploit considers such date as the
timestamp used for PAP and determines that the PAP with
timestamp implementation is insecure.

[Customized Authentication.] Since we summarize the
indicator instructions through the official documents and
websites, we only collect the APIs that are official included
in the Java programming languages. Therefore, for some
authentication procedures that are designed by developers,
AUTHEXPLOIT is unable to exploit them.

6 RELATED WORK

We broadly classify existing flaw detection techniques to
two broad categories: orchestration and automation. Or-
chestration refers to the approaches that put human in
the loop, whereas automation refers to the approaches that
do not need human intervention. Orchestration approaches
can be further classified into two categories, rule-based
techniques and attack-based techniques. Machine learning
approaches are all put together under the machine learning
techniques below.

6.1 Rule-based Techniques
Most existing techniques detect vulnerabilities by using
pre-defined rules/templates. MalloDroid [12] is a tool for
analyzing SSL/TLS code in Android apps to check whether
the code is potentially vulnerable to MITM attacks. Mal-
loDroid checks the Internet permissions and analyzes the
network API calls to identify certificates and hostname
verification code. According to the API calls and permis-
sions, MalloDroid determines whether the code has vulner-
abilities, including accepting all certificates, accepting all
hostnames, trusting many CAs, and using mixed-mode/no
SSL. However, because it only analyzes the network API
calls, MalloDroid is unable to identify all the potential flaws
due to its inability to extract the inter-component com-
munications. Instead of constructing a call graph/control
flow graph, HVLearn [37] is a black-box learning approach

8. This exception is proposed in March, 2018. Soot might solve this
problem in its next version.

that infers certificate templates from the certificates with
certain common names by using an automated learning
algorithm. It further detects those invalid certificates that
cannot be matched with certificate templates. However, this
approach can only be applied to the certificates with specific
common names. Spinner [38] is also a tool targeting on
black-box detection. It checks certificate pinning vulner-
abilities which may hide improper hostname verification
and enables MITM attacks. Without requiring access to the
code, Spinner generates traffic that includes a certificate
signed by the same CA, but with a different hostname. It
then checks whether the connection fails. A vulnerability is
detected if the connection is established and encrypted data
is transmitted. However, some unnecessary input will be
generated while applying a fully automated approach.

Other types of vulnerabilities are detected using similar
approaches. IntentSoot [39] detects intent injection vulner-
abilities by using static analysis. It builds call and con-
trol flow graphs for an app, and then tracks taint prop-
agation within a component, between components, and
during the reflection call. An intent injection vulnerability
is detected if the taint propagation violates the defined
rules. Similarly, cryptographic misuses are predefined in
CRYPTOLINT [40]. By manually analyzing Android apps,
the correct ways of implementing cryptographic algorithm
are provided. CRYPTOLINT first computes a super control
flow graph for the app, and then uses program slicing to
identify whether the cryptographic implementation violates
any of the correct implementations. IoTFUZZER [41] aims
to detect flaws in IoT devices. Without precisely locating
software flaws, IoTFUZZER performs a dynamic analysis
to identify the content in IoT apps, and then forms and
delivers messages to the target devices. It monitors the
devices to capture a triggered crash. Manual effort is needed
in defining the fuzzing policy which IoTFUZZER follows to
generate messages.

Besides analyzing source code or binary code of soft-
ware, some researchers created inputs to trigger the corre-
sponding vulnerabilities. DTaint [42] performs static analysis
to detect taint-style vulnerabilities - vulnerabilities in the
firmware where an input results in an unsafe path to a
sensitive sink. By analyzing the unsafe paths (from sources
to sensitive sinks), DTaint analyzes data dependency from
callees to callers. DTaint explores vulnerabilities through
static code analysis, SMV-Hunter [17] conducts dynamic
analysis by simulating user interactions and launching
MITM attacks to detect SSL vulnerabilities. However, the
detection performance relies on how well user inputs are
created, and some vulnerabilities cannot be identified since
they are not triggered by the MTIM attacks. Like SMV-
Hunter, Hush [43] also uses hybrid analysis to detect server-
based oversharing vulnerabilities. First, Hush applies static
analysis to invoke network APIs that can deserialize net-
work data and manipulate user interfaces. Then, it uses
dynamic analysis to test the candidate vulnerabilities. To
confirm a vulnerability, Hush analyzes whether some spe-
cific fields have flows from sources to sinks. Hush is a semi-
automated detection tool, requiring one to create an account
for each app before connecting to the server. Although
inputs can be generated automatically, it is still a challenge
to construct precise inputs to trigger vulnerabilities.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 12

6.2 Attack-based Techniques
Instead of using rules/templates, some orchestration ap-
proaches locate vulnerabilities by launching attacks. AUTH-
Scope [44] targets the vulnerabilities at the server side. Since
it is difficult to extract the source code running on the remote
servers, AUTHScope sends various network requests to the
server and applies differential traffic analysis to identify
when the server does not provide proper token verification.
D’Orazio et al. [45] applied their detection tool to Android
and iOS. The tool creates a self-signed certificate to start a
connection with the server to identify whether a self-signed
certificate can be accepted. However, those two approaches
only analyze one type of vulnerability, do not consider apps
with multiple protection schemes and can only identify apps
without hostname verification. Instead of launching one
attack, six different attack scenarios must be launched by
AndroSSL [13], which provides an environment for develop-
ers to test their apps against connection security flaws. The
environment has an actual server that accepts authentication
requests and static and dynamic URLs without verifying
the hostnames and certificates. Chen et al. [46] focused on
the Host head of HTTP implementations. They launched
a new attack “Host of Troubles” on those HTTP imple-
mentations, and analyzed behaviours of implementations
in their handling of Host headers. Such approach only
detected a specific type of vulnerability, namely SSL-related
vulnerabilities.

6.3 Machine Learning Techniques
Orchestration approaches might be inefficient because of the
involvement of manual efforts. To address this drawback,
machine learning can be used to construct a fully automated
detection approach. Harer et al. [47] created two models,
a build-based model and a source-based model, to detect
vulnerabilities. Build-based features are collected from the
function level by extracting operations (i.e., the definition
and use of variables), and source-based features are col-
lected from source code by extracting individual tokens
(e.g., types, variable names and comments). However, the
result is imprecise since source code is not simply a string
of words, but syntax- and semantic-based representations.

VulDeePecker [48] and SySeVr [49] detect vulnerabilities
by using deep learning, which can replace human expert
effort while learning. By extracting library/API function
calls, VulDeePecker generates training vectors to represent
the invocations of these function calls. It then trains a bidi-
rectional long short-term memory (BLSTM) neural network
model with the training vectors. To improve the detection
accuracy, SySeVr collects more features, including function
calls, array usage, pointer usage, and arithmetic expressions
for training. Although VulDeePecker and SySeVr detected
many types of vulnerabilities without any manual effort, a
strong requirement for the training dataset is that each code
segment includes only one vulnerability.

A large dataset is always required for machine learn-
ing approaches. DRLgencert [50] tests certificate validation
in SSL/TLS implementations by using deep reinforcement
learning. It first chooses one certificate from the dataset to
perform differential testing. If a discrepancy is triggered,
this certificate is valid. Otherwise, DRLgencert collects some

features from the certificate based on a pre-defined feature
extraction scheme, and then sends it to reinforcement learn-
ing model to be modified. WoodPecker [51] detects shad-
owed domains by using machine learning models (Support
Vector Machine, Random Forest, Logistic Regression, Naive
Bayes, and Neural Network models). It takes as input a
large set of training data (confirmed shadowed domains)
and then collects 17 features to train its classification models.

The above detection approaches which use machine
learning/data mining have the desirable property of work-
ing automatically and we investigated their application to
our problem. We extracted control flow graphs and used
different machine learning algorithms (i.e., convolutional
neural network (CNN), decision tree, naive Bayes, support
vectore machine (SVM), and logistic regression) to build de-
tection models. However the detection results were found to
be poor. For example, SVM – the approach with the highest
accuracy, had Precision, Recall, and F1 of 52.7%, 92.9%, and
67.6%, respectively. Our observations show that the main
difficulties in using these approaches for our problem is the
question of how to filter the useful features and how to build
a model accurately from limited data.

7 CONCLUSION

In this paper, we studied the detection effectiveness of two
detection schemes, orchestration and automation, while ex-
ploring authentication flaws in Android apps. According to
the results generated by GLACIATE, we were interested in
whether the performance can be improved by involving the
manual effort (i.e., orchestration approach). Targeting on the
authentication flaws in Android apps, i.e., Flaw 1 — plain
password transmission, Flaw 2 — insufficient SSL/TLS val-
idation and Flaw 3 — incomplete timestamp format, we
manually created several detection templates and then built
an orchestration tool, AUTHEXPLOIT, to detect these flaws.

We assessed the effectiveness of AUTHEXPLOIT by ap-
plying it to 1,200 real world Android apps and then com-
pared it with GLACIATE, and other two orchestration
tools, MalloDroid, and SMV-Hunter. The results indicated
that AUTHEXPLOIT if more accurate than GLACIATE
with a higher Precision. However, GLACIATE performed
the best when we consider the entire performance. While
only comparing the orchestration tools, AUTHEXPLOIT per-
formed better than both MalloDroid and SMV-Hunter. To
gain a further insight, we focused on paid apps, popular
apps and different app categories. Through statistic analysis,
we analyzed whether these factors affect the implementa-
tion correctness of the password authentication protocol sig-
nificantly. The results proved that there are no correlations
between these features and the implementation correctness.

We intend to make AUTHEXPLOIT available as an open
source tool that help towards the development of secure
Android applications. However, app developers may need
training to recognise the potential security threats that
are most significant. As we only focus in this work on
the timestamp-based password authentication protocol, we
plan to extend AUTHEXPLOIT with additional security rules
to capture implementation defects in nonce-based pass-
word authentication. Furthermore, as several implemented
authentication flaws can be fixed automatically, it is also

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 13

important to develop approaches to correct the defects or
provide fix suggestions when they are detected.

REFERENCES

[1] S. Yovine and G. Winniczuk, “Checkdroid: a tool for automated
detection of bad practices in android applications using taint
analysis,” in Proceedings of the 4th International Conference on Mobile
Software Engineering and Systems. IEEE Press, 2017, pp. 175–176.

[2] L. Lamport, “Password authentication with insecure communica-
tion,” Communications of the ACM, vol. 24, no. 11, pp. 770–772,
1981.

[3] B. Canvel, A. Hiltgen, S. Vaudenay, and M. Vuagnoux, “Password
interception in a ssl/tls channel,” in Annual International Cryptol-
ogy Conference. Springer, 2003, pp. 583–599.

[4] L. O’Gorman, “Comparing passwords, tokens, and biometrics for
user authentication,” Proceedings of the IEEE, vol. 91, no. 12, pp.
2021–2040, 2003.

[5] J. Hubbard, K. Weimer, and Y. Chen, “A study of ssl proxy
attacks on android and ios mobile applications,” in Consumer
Communications and Networking Conference (CCNC), 2014 IEEE 11th.
IEEE, 2014, pp. 86–91.

[6] C.-M. Chen, L. Xu, W. Fang, and T.-Y. Wu, “A three-party pass-
word authenticated key exchange protocol resistant to stolen
smart card attacks,” in Advances in Intelligent Information Hiding
and Multimedia Signal Processing. Springer, 2017, pp. 331–336.

[7] H.-M. Sun, Y.-H. Chen, and Y.-H. Lin, “opass: A user authentica-
tion protocol resistant to password stealing and password reuse
attacks,” IEEE Transactions on Information Forensics and Security,
vol. 7, no. 2, pp. 651–663, 2012.

[8] T. Tsuji and A. Shimizu, “An impersonation attack on one-time
password authentication protocol ospa,” IEICE Transactions on
Communications, vol. 86, no. 7, pp. 2182–2185, 2003.

[9] R. Amin, N. Kumar, G. Biswas, R. Iqbal, and V. Chang, “A light
weight authentication protocol for iot-enabled devices in dis-
tributed cloud computing environment,” Future Generation Com-
puter Systems, vol. 78, pp. 1005–1019, 2018.

[10] M. Mannan and P. C. Van Oorschot, “Using a personal device to
strengthen password authentication from an untrusted computer,”
in International Conference on Financial Cryptography and Data Secu-
rity. Springer, 2007, pp. 88–103.

[11] C.-W. Lin, C.-S. Tsai, and M.-S. Hwang, “A new strong-password
authentication scheme using one-way hash functions,” Journal of
Computer and Systems Sciences International, vol. 45, no. 4, pp. 623–
626, 2006.

[12] S. Fahl, M. Harbach, T. Muders, L. Baumgärtner, B. Freisleben,
and M. Smith, “Why eve and mallory love android: An analysis of
android ssl (in) security,” in Proceedings of the 2012 ACM conference
on Computer and communications security. ACM, 2012, pp. 50–61.

[13] S. Desloges, J. Ouellet, and C. Boileau, “Androssl: A platform to
test android applications connection security,” in Foundations and
Practice of Security: 8th International Symposium, FPS 2015, Clermont-
Ferrand, France, October 26-28, 2015, Revised Selected Papers, vol.
9482. Springer, 2016, p. 294.

[14] Y. Xiao, M. Li, S. Chen, and Y. Zhang, “Stacco: Differentially an-
alyzing side-channel traces for detecting ssl/tls vulnerabilities in
secure enclaves,” in Proceedings of the 2017 ACM SIGSAC Conference
on Computer and Communications Security. ACM, 2017, pp. 859–
874.

[15] D. P. Jablon, “Strong password-only authenticated key exchange,”
ACM SIGCOMM Computer Communication Review, vol. 26, no. 5,
pp. 5–26, 1996.

[16] S. Ma, E. Bertino, S. Nepal, J. Li, D. Ostry, R. H. Deng, and S. Jha,
“Finding flaws from password authentication code in android
apps,” in European Symposium on Research in Computer Security.
Springer, 2019, pp. 619–637.

[17] D. Sounthiraraj, J. Sahs, G. Greenwood, Z. Lin, and L. Khan,
“Smv-hunter: Large scale, automated detection of ssl/tls man-in-
the-middle vulnerabilities in android apps,” in In Proceedings of
the 21st Annual Network and Distributed System Security Symposium
(NDSSÂ¡Â14. Citeseer, 2014.

[18] F. E. Allen, “Control flow analysis,” in ACM Sigplan Notices, vol. 5,
no. 7. ACM, 1970, pp. 1–19.

[19] M. Conti, N. Dragoni, and V. Lesyk, “A survey of man in the
middle attacks,” IEEE Communications Surveys & Tutorials, vol. 18,
no. 3, pp. 2027–2051, 2016.

[20] C. Brubaker, S. Jana, B. Ray, S. Khurshid, and V. Shmatikov, “Us-
ing frankencerts for automated adversarial testing of certificate
validation in ssl/tls implementations,” in 2014 IEEE Symposium on
Security and Privacy. IEEE, 2014, pp. 114–129.

[21] K. Alghamdi, A. Alqazzaz, A. Liu, and H. Ming, “Iotverif: An au-
tomated tool to verify ssl/tls certificate validation in android mqtt
client applications,” in Proceedings of the Eighth ACM Conference on
Data and Application Security and Privacy. ACM, 2018, pp. 95–102.

[22] A. Juels, N. Triandopoulos, M. E. Van Dijk, and R. Rivest, “Meth-
ods and apparatus for silent alarm channels using one-time pass-
code authentication tokens,” Dec. 6 2016, uS Patent 9,515,989.

[23] R. Vallée-Rai, P. Co, E. Gagnon, L. Hendren, P. Lam, and V. Sun-
daresan, “Soot: A java bytecode optimization framework,” in
CASCON First Decade High Impact Papers. IBM Corp., 2010, pp.
214–224.

[24] A. Einarsson and J. D. Nielsen, “A survivor’s guide to java pro-
gram analysis with soot,” BRICS, Department of Computer Science,
University of Aarhus, Denmark, p. 17, 2008.

[25] D. Hovemeyer, J. Spacco, and W. Pugh, “Evaluating and tuning
a static analysis to find null pointer bugs,” in ACM SIGSOFT
Software Engineering Notes, vol. 31, no. 1. ACM, 2005, pp. 13–19.

[26] M. Weiser, “Program slicing,” in Proceedings of the 5th international
conference on Software engineering. IEEE Press, 1981, pp. 439–449.

[27] B. Korel and S. Yalamanchili, “Forward computation of dynamic
program slices,” in Proceedings of the 1994 ACM SIGSOFT interna-
tional symposium on Software testing and analysis. ACM, 1994, pp.
66–79.

[28] H. Khanfar, B. Lisper, and A. N. Masud, “Static backward program
slicing for safety-critical systems,” in Ada-Europe International Con-
ference on Reliable Software Technologies. Springer, 2015, pp. 50–65.

[29] J. L. Fleiss, B. Levin, and M. C. Paik, Statistical methods for rates and
proportions. John Wiley & Sons, 2013.

[30] R. Kohavi et al., “A study of cross-validation and bootstrap for
accuracy estimation and model selection,” in Ijcai, vol. 14, no. 2.
Montreal, Canada, 1995, pp. 1137–1145.

[31] T. Watanabe, M. Akiyama, F. Kanei, E. Shioji, Y. Takata, B. Sun,
Y. Ishi, T. Shibahara, T. Yagi, and T. Mori, “Understanding the
origins of mobile app vulnerabilities: A large-scale measurement
study of free and paid apps,” in Proceedings of the 14th International
Conference on Mining Software Repositories. IEEE Press, 2017, pp.
14–24.

[32] P. E. McKnight and J. Najab, “Mann-whitney u test,” The Corsini
encyclopedia of psychology, pp. 1–1, 2010.

[33] T. Scholte, D. Balzarotti, and E. Kirda, “Have things changed
now? an empirical study on input validation vulnerabilities in
web applications,” Computers & Security, vol. 31, no. 3, pp. 344–
356, 2012.

[34] G. Vijayaraghavan and C. Kaner, “Bugs in your shopping cart: A
taxonomy,” Retrieved July, vol. 30, p. 2003, 2002.

[35] D. S. Moore, “Chi-square tests.” PURDUE UNIV LAFAYETTE IND
DEPT OF STATISTICS, Tech. Rep., 1976.

[36] A. Razaghpanah, A. A. Niaki, N. Vallina-Rodriguez, S. Sundare-
san, J. Amann, and P. Gill, “Studying tls usage in android apps,”
in Proceedings of the 13th International Conference on emerging Net-
working EXperiments and Technologies. ACM, 2017, pp. 350–362.

[37] S. Sivakorn, G. Argyros, K. Pei, A. D. Keromytis, and S. Jana,
“Hvlearn: Automated black-box analysis of hostname verification
in ssl/tls implementations,” in Security and Privacy (SP), 2017 IEEE
Symposium on. IEEE, 2017, pp. 521–538.

[38] C. M. Stone, T. Chothia, and F. D. Garcia, “Spinner: Semi-automatic
detection of pinning without hostname verification,” in Proceedings
of the 33rd Annual Computer Security Applications Conference. ACM,
2017, pp. 176–188.

[39] B. Xiong, X. Guangli, T. Du, J. S. He, and S. Ji, “Static taint
analysis method for intent injection vulnerability in android appli-
cation,” in International Symposium on Cyberspce Safety and Security.
Springer, 2017, pp. 16–31.

[40] M. Egele, D. Brumley, Y. Fratantonio, and C. Kruegel, “An em-
pirical study of cryptographic misuse in android applications,”
in Proceedings of the 2013 ACM SIGSAC conference on Computer &
communications security. ACM, 2013, pp. 73–84.

[41] J. Chen, W. Diao, Q. Zhao, C. Zuo, Z. Lin, X. Wang, W. C. Lau,
M. Sun, R. Yang, and K. Zhang, “Iotfuzzer: Discovering memory
corruptions in iot through app-based fuzzing,” in In Proceedings of
the 21st Annual Network and Distributed System Security Symposium.
Citeseer, 2018.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 14

[42] K. Cheng, Q. Li, L. Wang, Q. Chen, Y. Zheng, L. Sun, and Z. Liang,
“Dtaint: detecting the taint-style vulnerability in embedded device
firmware,” in 2018 48th Annual IEEE/IFIP International Conference
on Dependable Systems and Networks (DSN). IEEE, 2018, pp. 430–
441.

[43] W. Koch, A. Chaabane, M. Egele, W. Robertson, and E. Kirda,
“Semi-automated discovery of server-based information overshar-
ing vulnerabilities in android applications,” in Proceedings of the
26th ACM SIGSOFT International Symposium on Software Testing and
Analysis. ACM, 2017, pp. 147–157.

[44] C. Zuo, Q. Zhao, and Z. Lin, “Authscope: Towards automatic
discovery of vulnerable authorizations in online services,” in
Proceedings of the 2017 ACM SIGSAC Conference on Computer and
Communications Security. ACM, 2017, pp. 799–813.

[45] C. J. D’Orazio and K.-K. R. Choo, “A technique to circumvent
ssl/tls validations on ios devices,” Future Generation Computer
Systems, vol. 74, pp. 366–374, 2017.

[46] J. Chen, J. Jiang, H. Duan, N. Weaver, T. Wan, and V. Paxon, “Host
of troubles: Multiple host ambiguities in http implementations,”
in Proceedings of the 2016 ACM SIGSAC Conference on Computer and
Communications Security. ACM, 2016, pp. 1516–1527.

[47] J. A. Harer, L. Y. Kim, R. L. Russell, O. Ozdemir, L. R. Kosta,
A. Rangamani, L. H. Hamilton, G. I. Centeno, J. R. Key, P. M.
Ellingwood et al., “Automated software vulnerability detection
with machine learning,” arXiv preprint arXiv:1803.04497, 2018.

[48] Z. Li, D. Zou, S. Xu, X. Ou, H. Jin, S. Wang, Z. Deng, and Y. Zhong,
“Vuldeepecker: A deep learning-based system for vulnerability
detection,” arXiv preprint arXiv:1801.01681, 2018.

[49] Z. Li, D. Zou, S. Xu, H. Jin, Y. Zhu, Z. Chen, S. Wang, and J. Wang,
“Sysevr: A framework for using deep learning to detect software
vulnerabilities,” arXiv preprint arXiv:1807.06756, 2018.

[50] C. Chen, W. Diao, Y. Zeng, S. Guo, and C. Hu, “Drlgencert:deep
learning-based automated testing of certificate verification in ss-
l/tls implementations,” in 2018 IEEE International Conference on
Software Maintenance and Evolution (ICSME). IEEE, 2018, pp. 48–
58.

[51] D. Liu, S. Li, K. Du, H. Wang, B. Liu, and H. Duan, “Don’t let one
rotten apple spoil the whole barrel: Towards automated detection
of shadowed domains,” in Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Security. ACM, 2017,
pp. 537–552.

